The Ultimate Hot Tub

2014-report-coverI have never been an optimist or a pessimist. I’m an apocalyptic only. Our only hope is apocalypse. Apocalypse is not gloom. Its salvation.” –Marshall McLuhan

Apocalypse – Old English, via Old French and ecclesiastical Latin from Greek apokalupsis, from apokaluptein ‘uncover, reveal,’ from apo- ‘un-’ + kaluptein ‘to cover.’ –Google

A report released Wednesday on a test of the E-Cat Energy Catalyzer concludes a large amount of heat was generated using a fuel of one gram of nickel powder, with no radiation detected at all.

The authors describe details of the equipment, the experimental set-up, and how heat measurements were taken, along with an analysis of the outer shell material and fuel, in the paper Observation of abundant heat production from a reactor device and of isotopic changes in the fuel [.pdf]


Listen to Andrea Rossi discuss the results with John Maguire here.


The paper was authored by scientists who had performed tests on an earlier version of the E-Cat, releasing the report Indication of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder [.pdf] last year. During one November, 2012 experiment, the E-Cat generated so much thermal power, it melted the steel inner core body and the ceramic casing. This second test purposefully kept the input power moderate to ensure a longer life for the newly designed E-Cat.

As in the previous test, David Bianchini monitored radiation from the unit “before, during, and after operation”. No radiation was reported from the E-Cat, or from the fuel charge.

Over the last year, E-Cat intellectual property and licensing rights were acquired by private company Industrial Heat, LLC, an affiliate of Cherokee Investment Partners, with investment in the project reported at over $10 million. The group has retained inventor, designer, and Chief Engineer of the E-Cat, Andrea Rossi to lead the development of the energy generator.

Andrea Rossi participated in the experiment by fueling, starting the E-Cat, stopping the E-Cat, and removing the fuel from inner chamber. At these times, members of the evaluation team were present, and observing the activity.

Observation of abundant heat production from a reactor device and of isotopic changes in the fuel [.pdf]

The report was organized into sections with the lead authors writing the Abstract and main body of the report. Five other authors contributed four appendixes describing radiation monitoring and fuel analysis, including scanning electron microscope SEM and x-ray spectroscopy studies.

Giuseppe Levi
Bologna University, Bologna, Italy

Evelyn Foschi
Bologna, Italy

Bo Höistad, Roland Pettersson and Lars Tegnér
Uppsala University, Uppsala, Sweden

Hanno Essén
Royal Institute of Technology, Stockholm, Sweden

Abstract
1. Introduction
2. Reactor characteristics and experimental setup
3. Experimental procedure
4. Data analysis method
5. Analysis of data obtained from the dummy reactor
6. Analysis of data obtained from the E-Cat
7. Rangone Plot
8. Fuel analysis
9. Summary and concluding remarks
Acknowledgements
References

Appendix 1
Radiation measurements during the long-term test of the E-cat prototype.
D. Bianchini
Bologna

Appendix 2
Alumina sample analysis
Ennio Bonetti
Department of Physics and Astronomy
University of Bologna

Appendix 3
Investigation of a fuel and its reaction product using SEM/EDS and ToF-SIMS
Ulf Bexell and Josefin Hall
Materialvetenskap, Hogskolan Dalarna

Appendix 4
Results ECAT ICP-MS and ICP-AES
Jean Pettersson
Inst. of Chemistry-BMC, Analytical Chemistry
Uppsala University

Comparing E-Cats

E-Cat HT on support frame from December test
E-Cat HT on test bed November 2012
The E-Cat has undergone many design changes since 2011 when the public got their first glimpse of the Energy Catalyzer.

Last year, the E-Cat appeared as a smooth, silicon nitride ceramic shell cylinder 33 cm in length and 10 cm in diameter, painted black. Inside was a second cylinder made of corandom, which contained resistor coils to heat the reactor with an “industrial trade secret waveform”. The innermost cylinder was made of steel, 33 mm long and 3 mm in diameter and contained the fuel charge of treated nickel powder with the secret catalyst.
 

E-Cat on scale, February 2014
E-Cat on scale February 2014
This year, the E-Cat is less than two-thirds the length, appearing as “an alumina cylinder, 2 cm in diameter and 20 cm in length, ending on both sides with two cylindrical alumina blocks (4 cm in diameter, 4 cm in length), non-detachable from the body of the reactor…”

The outer surface of the body of the E-Cat is no longer smooth, but “molded in triangular ridges, 2.3 mm high and 3.2 mm wide at the base, covering the entire surface and designed to improve convective thermal exchange…”

Design changes allowed for improved features, says the report. This year’s 2014 model E-Cat thermal generator can attain higher temperatures, while avoiding internal melting of the powder.

To initiate and control the reaction, resistor coils surrounding the inner fuel cylinder heat up from “specific electromagnetic pulses”. The authors report the reactant is a micron-sized nickel-powder mixture and that once heated, “it is plausible” that a lithium hydride delivers the hydrogen fuel for the reaction.

Last year, the E-Cat had a cyclic input power, which appeared to regulate the heat-producing reaction. On one end of this year’s new bone-shaped generator, a hole that allows for re-charging of the reactant also holds a temperature sensor that sends data to the controller. If the inner chamber gets too hot, the pulse is dialed down.

Measuring E-Cat Heat

Previous model E-Cat HT from 2013 report
Previous model E-Cat HT from 2013 report
As in the previous test, heat was measured by thermal imaging and computing the convection away from the surface of the generator.

Two thermal image cameras mapped the heat data of the generator across its surface as the E-Cat operated. Thermal imaging is a well-developed technology with a strong track record in many applications, but not in the field of cold fusion, which has relied on calorimeters and direct contact thermocouples.

New model 2014 E-Cat in operation.
Optical photo of new model E-Cat in operation.

The authors of the report state that they wanted to use a thermocouple, but that “the ridges made thermal contact with any thermocouple probe placed on the outer surface of the reactor extremely critical, making any direct temperature measurement with the required precision impossible.”

An empty E-Cat played the dummy to check that power in would match power out, as was observed.

The infrared camera’s temperature readings were converted to radiant power in watts by the Stephan-Boltzmann formula, an equation with parameters dependent on the emissivity ε of the material as well as the temperature. The outer shell of 99% alumina was divided into sections, and ε assigned to each area.

The issue of emissivity of alumina is still under discussion in the scientific community. Some believe there may be a larger source of error in the value ε. Aware that the emissivity of Alumina is temperature-dependent, the authors plot the emissivity ε over temperature saying that ε “has been measured at +/- 0.01 for each value of emissivity; this uncertainty has been taken into account when calculating radiant energy.”

E-Cat Power and Energy

Net thermal power produced by E-Cat
Plot 6: Net thermal power produced by E-Cat
Plot 6 shows a graph of the Net Power Out. The horizontal axis marks every two days and the vertical axis showing average Watts produced.

Net Power Out is the power produced by the E-Cat, minus the power inputs, and shows the amount of watts generated solely by the E-Cat.

As described in the report, after the first ten days, the input power was lowered by the controller. The team then decided to increase the input power about 100 Watts, which over six minutes, activated a large jump in temperature, equating to a net thermal power output of about 2.3 kilowatts. At peak usage, a large home may require 1-3 kilowatts electrical power.

The area under the graph over the next twenty-days represents just over 1 Megawatt-hour of energy. According to the report, the total energy produced over the month of testing was a remarkable 1.5 MWh generated from 1 gram of nickel-powder fuel.

Thus, E-Cat energy density – 1.6 billion +/- 10% Watt hours/kilogram – is much greater than any energy derived from the chemical burning of gasoline, oil, or coal.

Compare energy densities of traditional fuels modified Rangone chart by Alan Fletcher:

141011_ragone_30-ColdFusionNow

Plot-8-COP-cropLast year, E-Cat test COPs at or below three, with values of 2.9 +/- 0.3.

This year, COP was computed as well over 3, even though the device was said to not have operated at maximum output.

It has been stated many times that a COP > 3 makes a commercially-viable energy technology.

Read David French’s explanation of COP here.

Fuel Analysis

SEM of fuel Particle 1
SEM of fuel “sample granule” Particle 1
Of the 1 gram total in the reactor, a 10 mg sample was removed from the reactor and analyzed for content.

Materials analysis revealed natural nickel grains of a few microns in size as the bulk of the material. Other elements included Lithium, Aluminum, Iron, and Hydrogen. “Large amounts” of Carbon and Oxygen were also found.

But after the reaction, the ash had a “different texture than the powder-like fuel by having grains of different sizes”, and there was an unusual and unexpected shift in isotopic composition for the Nickel and Lithium grains.

Quoting from the report:

The Lithium content in the fuel is found to have the natural composition, i.e. 6Li 7 % and 7Li 93 %. However at the end of the run a depletion of 7Li in the ash was revealed by both the SIMS and the ICP-MS methods. In the SIMS analysis the 7Li content was only 7.9% and in the ICP-MS analysis it was 42.5 %. This result is remarkable since it shows that the burning process in E-Cat indeed changes the fuel at the nuclear level, i.e. nuclear reactions have taken place.

The shift in Nickel is reported as:

Another remarkable change in the ash as compared to the unused fuel is the identified change in the isotope composition of Ni. The unused fuel shows the natural isotope composition from both SIMS and ICP-MS, i.e. 58Ni (68.1%), 60Ni (26.2%), 61Ni (1.1%), 62Ni (3.6%), and 64Ni (0.9%), whereas the ash composition from SIMS is: 58Ni (0.8.%), 60Ni (0.5%), 61Ni (0%), 62Ni (98.7%), 64Ni (0%), and from ICP-MS: 58Ni (0.8%), 60Ni (0.3%), 61Ni (0%), 62Ni (99.3%), 64Ni (0%). We note that the SIMS and ICP-MS give the same values within the estimated 3% error in the given percentages.

Possible reaction pathways to these stunning results are provided in the report, but the authors caution that “reaction speculation above should only be considered as an example of reasoning and not a serious conjecture.” There is as yet no explanation for these findings.

What to think

The E-Cat has attracted financial investment, and inventor Andrea Rossi has given rights to the technology to private company Industrial Heat. They are in to win. Engineering changes are improving control of the reaction and the E-Cat is shrinking in size, now down to a breadstick.

While discussion of procedure and parameters continues, it won’t change the fact that we are within epsilon of a revolution in energy technology. Whether it is the front-running E-Cat, or another start-up that finds the right recipe, the E-Cat test report gives a peek at what is possible to achieve.

On multiple occasions, the E-Cat has publicly demonstrated steam, heat, and energy, once producing one-half megawatt power. Even if the net power out were 50% less, this E-Cat test run would still be making excess heat.

Global research, as presented at these conferences here and here, is focused on understanding the science, and finding a theory to describe this newly discovered phenomenon. Swedish research and development institute Elforsk, a partial sponsor of the test along with the Royal Swedish Academy of Sciences, will begin a ‘research initiative’ as stated by Elforsk CEO Magnus Olofsson.

Companies like Industrial Heat and men like Andrea Rossi are pushing the frontiers of engineering to create a product to re-make the world. Safe, non-polluting, with the energy-density to free a planet from the present destructive paradigm, there is nothing that will change our world more than new energy technology.

Renewing a civilization by empowering local communities, restoring our wildspaces and the wildlife that lives there, powering the hot tub in my backyard (that’s not my backyard in the picture), we are at the break-boundary. Are you ready for Apocalypse???

Cold Fusion Now!

An-impossible-invention-cover-200x279The most important thing that can be learned from the work that we are doing is that we will overcome any critical moment, so in this difficult moment for everybody, if anybody works, believing in what he does, and works with all his efforts, we can build up a new, strong economy.” —Andrea Rossi in interview with James Martinez December 2011

Ask questions of the authors at LENR-forum.

Related Links

Status Report – Rossi Pending US Patent Application David French October 2014

US Examiner Addresses Andrea Rossi US Patent Application David French March 2014

Raleigh investor Darden still bullish on controversial nuclear technology Bizjournal.com October 2014

Mats Lewan Interview E-Cat, Andrea Rossi, & An Impossible Invention John Maguire May 2014

Rossi E-Cat HT energy density off the chart Ruby Carat May 2013

Andrea Rossi in James Martinez interview [.mp3] December, 2011

E-Cat test: One-half Megawatt Self-Sustained Ruby Carat October 2011

Videos: Rossi’s “One Megaatt Plant” + New E-Cat Test (via NYTeknik) Eli Eliott September 2011

E-Cat World Frank Acland

Chase Peterson, Former President of University of Utah, Dies

This article was originally published in Infinite Energy Magazine here.


CHASE PETERSON, FORMER PRESIDENT OF UNIVERSITY OF UTAH, DIES

by Marianne Macy

Chase Nebeker Peterson, former President of University of Utah, died on September 14, 2014 from complications of pneumonia. His life story was traced in his 2012 autobiography, The Guardian Poplar: A Memoir of Deep Roots, Journey, and Rediscovery. The concept of roots were important to Chase Peterson. He never forgot his own from a family of Mormon pioneers, despite a life that would take him from his birthplace of Logan, Utah to elite eastern prep schools and Harvard University, from which he was an undergraduate and graduate of the medical school. In 2006, Peterson received the Harvard Medal, awarded at commencement by the Alumni Association for a “lifetime contribution to Harvard.” He had three official careers—Vice President of Harvard University, Vice President for Health Services at the University of Utah, and President of the University of Utah. He also practiced medicine and taught his last class in July of 2014. He was a public spokesperson for innovation at the institutions he was associated with, an innovator, administrator who instituted an open door policy with students, doctor, writer, and visionary.

Cornel West, philosopher, best-selling author, civil rights activist, saluted Chase Peterson for “his prophetic witness at Harvard in the turbulent 60s and 70s, his promotion of black priesthood in the Mormon church, his support of anti-apartheid protest in the 1980s, and his steadfast defense of academic freedom during the cold fusion controversy in the early 90s—all expressed his quiet and humble effort to be true to himself.”

MSNBC’s Lawrence O’Donnell, Jr. heard that Dr. Chase Peterson had died and put a moving tribute on air that saluted Peterson for his historically important actions at Harvard which included hiring the first African-American admissions staff member, instituting an enrollment strategy to embrace students less privileged than the typical Ivy League undergraduate—which, as it turned out, included O’Donnell himself, whose admissions entry interview was with Chase Peterson. The United States Supreme Court cited the measures Chase Peterson instituted as exemplary.

In 1978 Peterson had returned from Harvard to the University of Utah as Vice President in charge of health sciences and the university hospital program. There he found “a unique culture.” The University of Utah, he wrote, offered “an unfettered opportunity to restless young faculty members” who would not face the restraints imposed by more settled places. “Ambitious people—often mavericks held back by practices at other institutions—found comfort and support at the University of Utah.” In his book, Peterson mentioned Max Wintrobe, who in the 1940s was the leading hemotologist, texbook author and junior professor at John Hopkins, where he felt at the time he hit a glass ceiling of anti-Semitism at the otherwise excellent institution. Wintrobe, Peterson wrote, felt Utah, while lacking the research budgets of the institutions in the east, “nevertheless presented unlimited opportunity—a new Zion as it were—open to a Jew or anyone else smart and hard-working enough to take advantage of possibilities. As chief of the Department of Internal Medicine, he brought with him a critical mass of respected young medical investigators. Even more importantly, he brought a personal level of excellence that was infectious and launched Utah toward the upper ranks of medical schools and centers.” Peterson also pointed out that this receptive climate was historically illustrated in 1916, when Utah elected the second Jewish governor in the United States, Simon Bamberger, who was widely admired. He added that Bamberger had called the Utah Legislature into special session to ratify the national woman’s suffrage amendment.

Salt Lake City’s University of Utah is the “economic engine for the state,” a phrase coined by former University President David Gardner. Chase Peterson throughout his career valued his home state for its pioneering spirit and what to him was the epitome of American opportunity. Peterson worked to establish a nationally recognized center of medical research, with special contributions in genetic research and the high profile recognition for being the site of the first human heart implant based on research done by Dr. Willem Kolff. In 1982 Kolff’s results were approved by the FDA. In December 1982 the chief surgeon, Dr. William DeVries, operated on Barney Clark and implanted the artificial heart. Chase Peterson was the face of the University, giving twice a day reports to the assembled international media. In his memoir, Dr. Chase Peterson discussed the extraordinary events, but in a narrative twist completely his own finished his in-depth account of the medical breakthrough with the sort of question that Peterson attributed to the extraordinary world fascination with the story. Chase Peterson wrote that Barney Clark’s wife had told Chase right before surgery Barney had asked, “I wonder if I will still love you when I lose my heart?” Peterson wrote, “He answered that question a few days post-op when—still reduced whispering around a tracheotomy tube—he gestured to his wife and mouthed the words, ‘I love you.’ The scalpel had met its match. Love required a functional pump, but its home was elsewhere.”

Chase Peterson’s tenure and tributes are marked with mentions of his leadership, enthusiasm and generosity. Others remarked on his courage and support of academic freedom, freedom of inquiry and pursuit of ideas. To Peterson, this was a sacred trust he felt was his mission to uphold. His obituaries mentioned controversies of his tenure as University President, what he wrote of as the “perfect storm” on conflicting interests and opinions over Martin Fleischmann and Stanley Pons’ discovery and work on cold fusion at the University of Utah. The variety of descriptions reflected on the field now in Peterson’s obituary accounts illustrate the spectrum of those perspectives. Chase Peterson never stopped believing it was his job and responsibility to support the freedom of research, no matter the personal cost to himself and his family, no matter the warnings of no less an advisor than Nobel laureate Hans Bethe, who told him ahead of time, “They will only laugh at you.”

Peterson wrote in his memoir: “No president, dean or department chair at any research university can arbitrarily influence the publication or suppression of something against a faculty member’s will, whether that something is a chemical process, a better can opener, a concerto, a play, a piece of writing, or anything else. Neither can a faculty member’s right to publish or circulate something be prevented. Such action violates academic freedom in its most basic sense.”

If cold fusion could work, Chase Peterson said, it would be as important as the discovery of fire. The local NPR station in Salt Lake City rebroadcast a program on Peterson’s book this week that quoted him as saying this. More important was the right to pursue cold fusion, or any idea. Chase Peterson’s support of cold fusion was instrumental in costing him the presidency of the University of Utah. He often stated that he would do it all over again. Patrick Shea, who had served as counsel to Fleischmann and Pons, this week reflecting on Chase Peterson’s death commented, “No University of Utah president has ever done as much to support his faculty and their academic freedom.”

Chase Peterson is survived by his wife Grethe Ballif Peterson, his children Stuart and Edward Peterson, Erika Munson, and thirteen grandchildren. His memorial service will be held on September 27th at 10:00 am in the Church of Jesus Christ of Latter-day Saints Monument Park North Stake.

Marianne Macy has been doing oral histories relating to the history of cold fusion since 2007 and is writing a book on cold fusion’s start to the present day. An excerpt from the book will run in Issue 118 of Infinite Energy.

Related Links

The Guardian Poplar: A Memoir of Deep Roots, Journey, and Rediscover by Chase Nebeker Peterson

Cold Fusion Now Cross-Country Tour Ruby Carat visits the University of Utah campus.

How could cold fusion reactors replace coal-fired steam power plants?

Graphic: copyright CO2CRC

Because the grade of heat generated [and recoverable] from the cold fusion processes [as of now] is modest in relation to furnace temperatures of conventional power plant [ which are in the range of 2500- 3500 deg.F (1400C-1900C)], it is not obvious to me how the existing furnace/ boiler plant can be efficiently utilized for the cold fusion processes.

However, if the CF energy cell is used directly to generate saturated steam at pressures in the range of 500-3000 psig. (pounds per square inch gauge) where boiling temperatures would be in the range of 470-700 deg.F (240C-370C) [respectively for the pressure range] and then, a separate CF energy cell is used to directly superheat that steam to 750 deg.F (400C) for a 500 psig. and to say 1000 deg.F (540C) for the 3000 psig. boiler, then that superheated steam [for what ever steam pressure system is used] could be routed to an existing steam turbine plant [with the return treated and de-aerated condensate returned as feed to the new CF fired boiler.

In summary, the existing fossil-fired boiler plant [including all fuel/ combustion air/ furnace/boiler/ash systems/flue gas systems, are all deactivated and preferably removed, and the new cold fusion powered boiler together with the cold fusion powered superheater would be integrated into the existing steam turbine generating plant [including the steam condensing plant and, of course, a modified control room].

This whole project would certainly drastically reduce emmissions to zero, but would be very costly, I suspect, because of labour costs of dismantling the majority of the power station.

It may be a better option to build new power station using the new CF boiler and superheater plant with a custom designed and compact steam turbine/ generator plant in a small modern compact building.

With the most appropriate and efficient small 25MW cold fusion powered station I would suggest the following :

Boiler outlet conditions : 500 psig. sat. steam [at 470 deg. F (240C)]
Superheater outlet conditions : 470 psig. steam at 750 deg. F (400C)
Steam Turbine outlet conditions [to steam condenser] : 1 psia. @ 10% wetness.

The practical steamrate for generating electrical power with this relatively simple, small and compact station is about 9 lbs/ kwhour so the total steamrate from the small boilers serving a single multi-stage steam turbine/generator system which exhausts to a steam condenser is 225,000 lbs/hour.

Scientists would decide how much steam capacity each boiler/superheater combo would have and that would determine how many units would be required to meet the total steam demand.

Note: The use of steam for electric power generation [via boiler and steam turbine as presently done] is really 20th. century technology and all forms of cold and hot fusion should seek to find DIRECT electrical generation processes that harness ion transfer in conjunction with an external excitation field.

The use of steam at high pressure as an electrolyte, may however make use of an abundant commodity that facilitates extreme process efficiency, and this applies to the pressurized CIHT unit where high pressure steam is extremely efficient as an electrical conductor [the electrolyte] permeating the catalyst fill [consisting of back to back catalyst discs] through micro gaps in the catalyst structure. Further the basis of direct electric power is when a stream of ions or electrons flowing and driven by an existing voltage potential, will interact with an external excitation field thus creating export electric power.

Addendum:

This proposed and detailed [perhaps speculative] bold upgrade to the original BLP – CIHT unit could be a blockbuster in that a compact direct energy CIHT based system, offered in a wide range of sizes and used in multi-module applications for the power generation industry, but more importantly, for the shipping industries [from private and recreational craft to commercial shipping and naval shipping including surface vessels and submarines].

This conceptual unit [or units] could be installed in the ships engine room and bypass the existing electric generating plant with out the costly removal of that plant [or in the case of nuclear powered vessels deactivate and bypass the entire systems of the existing reactor compartment].

See details on The PRESSURIZED CIHT Unit [.pdf]

“One of the greatest contributions made to science”

Portrait of Martin Fleischmann by Winston August 2012

Infinite Energy Magazine Issue #117 highlights the new book Developments in Electrochemistry Science Inspired by Martin Fleischmann with the chapter on cold fusion written by veteran Navy scientist Melvin Miles and Michael McKubre, Director Energy Research Lab at SRI International, both of whom collaborated with Martin Fleischmann on cold fusion research for over a decade.

Read the original article here.

Science-Inspired-200x287New Book Honors Scientific Legacy of Fleischmann
by Christy L. Frazier

A new book honoring the scientific legacy of the late Prof. Martin Fleischmann has just been published by John Wiley & Sons. Developments in Electrochemistry: Science Inspired by Martin Fleischmann is edited by Derek Pletcher, Zhong-Qun Tian and David E. Williams, with 19 chapters (including the Introduction) about electrochemistry-related science written by electrochemists. Infinite Energy readers will be particularly interested in the chapter written by Melvin Miles and Michael McKubre, “Cold Fusion After a Quarter-Century: The Pd/D System.” Miles notes that he was picked as the cold fusion author and asked McKubre to assist him. He said he may have been chosen because he is “the only one other than Stan Pons who has written papers with Martin Fleischmann about calorimetry and the palladium-deuterium system.” Miles co-authored a number of papers during the last part of Fleischmann’s career.

Wiley’s website describes the book as “neither a biography nor a history” of Fleischmann’s contributions but rather a “series of critical reviews of topics in electrochemical science associated with Martin Fleischmann but remaining important today.” The chapters begin with an outline of Fleischmann’s contribution to the topic, followed by examples of research, established applications and prospects for future developments.

Editor Derek Pletcher worked with Fleischmann for 15 years at the University of Southampton. The book project was initiated because, “We believe Martin to have been a leading international scientist with very broad interests and a very warm personality and that we had benefitted greatly from our association with him (this includes some who were/are strongly anti cold fusion). We were therefore seeking a way to honor his memory and this became the book.”

The editors’ introduction, “Martin Fleischmann: The Scientist and the Person,” highlights great respect for Fleischmann’s approach to science and forward-thinking skill. They write: “Often his ideas were ahead of the ability of equipment to carry out the experiments, and it was only a few years later that the ideas came to fruition and it became possible to obtain high-quality experimental data.”

One of the editors, David Williams, was on the team at Harwell Atomic Energy Laboratory that purported to have negative results in replicating the cold fusion effect in 1989. Yet, in the Introduction the basic story of cold fusion is laid out and Fleischmann’s willingness to the end of his life in August 2012 to “defend the underlying concepts as well as his experiments” is recorded. They conclude, “It is inevitable and appropriate that this book contains a chapter on cold fusion that takes a positive view.”

McKubre appreciates the editors’ willingness to include what became a major part of Fleischmann’s scientific legacy. He said of the book, “This was a first class endeavor. I am very happy that it was done, and that cold fusion was included. At the end of Julian Schwinger’s life they rewrote his biography and reedited his bibliography to exclude mention of cold fusion. It is great to see that the electrochemistry community is not as narrowminded as the nuclear physics community seemed to be.”

The cold fusion chapter by Miles and McKubre focuses on “the multithreshold materials constraints that prevented easy reproducibility” of the Fleischmann-Pons (F-P) heat effect and the “brilliant, but largely not understood, implementation” of the F-P calorimeter. They note that some will believe that cold fusion “represents Martin Fleischmann’s greatest scientific failure.” They argue that the work may instead be one of the greatest contributions that Fleischmann made to science, noting that “few would have had the vision to see such a possibility, the courage to pursue it and the skill to test it” and that the F-P heat effect “is the sort of invention that only a man of Fleischmann’s knowledge, genius, confidence and courage was capable of making.”

Miles and McKubre conclude that “the future of Fleischmann’s dream must be practical, and therefore the heat effects must be cheaper, easier and of much larger scale and gain.” Future experiments are likely to utilize small-dimension materials including metals other than palladium in high-temperature.

Other chapters in the book include: A Critical Review of the Methods Available for Quantitative Evaluation of Electrode Kinetics at Stationary Macrodisk Electrodes; Electrocrystallization: Modeling and Its Application; Nucleation and Growth of New Phases on Electrode Surfaces; Organic Electrosynthesis; Electrochemical Engineering and Cell Design; Electrochemical Surface-Enhanced Raman Spectroscopy; Applications of Electrochemical Surface-Enhanced Raman Spectroscopy; In-Situ Scanning Probe Microscopies; In-Situ Infrared Spectroelectrochemical Studies of the Hydrogen Evolution Reaction; Electrochemical Noise: A Powerful General Tool; From Microelectrodes to Scanning Electrochemical Microscopy; In-Situ X-Ray Diffraction of Electrode Surface Structure; Tribocorrosion; Hard Science at Soft Interfaces; Electrochemistry in Unusual Fluids; Aspects of Light-Driven Water Splitting; Electrochemical Impedance Spectroscopy.

Developments in Electrochemistry: Science Inspired by Martin Fleischmann is available in hardcover ($115) and e-book format ($92.99) from the publisher at http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118694430.html, and is also available on Amazon. According to editor Derek Pletcher, proceeds from sales will be used to fund a Biannual Fleischmann Lecture at the Annual Conference of the Electrochemistry Group of the Royal Society of Chemistry.

Related Links

“Science Inspired by Martin Fleischmann”

Martin Fleischmann in 10 minutes

“The Explanation of LENR” book review by Nikita Alexandrov

Book Review of The Explanation of Low Energy Nuclear Reaction by Nikita Alexandrov, President of Permanetix Corporation, was originally published in Infinite Energy Magazine issue #117 September/October 2014 and is reproduced here.


Dr. Edmund Storms, one of the foremost experts in cold fusion/LENR research has recently published a new book titled The Explanation of Low Energy Nuclear Reaction: An Examination of the Relationship Between Observation and Explanation. Dr. Storms worked at Los Alamos labs for 34 years studying energy related chemistry, specifically advanced nuclear projects. This book is currently the most up-to-date compilation of LENR research and contains over 900 references, but is written in such a way that it is organized and conducive to a well rounded understanding.

According to the preface by Dr. Mike McKubre of Stanford Research Institute, “There is no better synthesis of knowledge and understanding presently available to us and I know of no other person capable of making an evaluation at this level.” While this could be considered a reference material for experimental results, it differs from Dr. Storms’ previous books in that it introduces his theory of the mechanism behind the LENR effect, an oscillating linear cluster of two or more hydrogen or deuterium atoms called the Hydroton.

Front-cover-300ppi-200x298The first half of the book contains a wealth of knowledge regarding the experimental results obtained in the field. This includes the physics of the various experimental systems as well as an overview of instrumentation and general trends in the collective data. There are a large amount of pictures and graphs which really help to mentally process some of the complex relationships in the data. This section of the book is critical for anyone interested in LENR because it organizes and condenses the experimental procedures and results in a way which makes the huge amount of seemingly contradictory research much simpler to understand.

Dr. Storms takes a first-principles approach and imposes certain limits on the parameters of LENR theory based on what has been observed and basic chemical and physical principles. The experimental techniques used in the field are explained as well as the limitations and some reasons all of the facets of the LENR effect have eluded researchers. An overview of the physics of radiation from various nuclear reactions which may be present is very helpful in explaining the odd experimental results of the field. It is proposed that only a few types of radiation are produced directly from the LENR reaction but secondary radiation is produced from either the interaction of radiation with other matter in the system, traditional nuclear effects such as fractofusion (example: Ti-D experiments) or combination fusion-fission reactions (very unique part of the Hydroton theory). Dr. Storms goes into detail about how he believes various triggering methods initiate or improve the production of the LENR effect.

Hydroton-vertical-chain-137x800Dr. Storms’ theory revolves around a linear oscillating cluster of two or more hydrogen or deuterium atoms called a Hydroton. Under certain conditions this structure forms in the nano-cracks of metallic substrates. This differs significantly from the early theories of LENR in that it does not take place in the metallic lattice. Many theories are based on the fact that hydrogen or deuterium loaded into a metallic lattice inherently become pushed very close together, a shortcut towards fusion. These same theories require that the nuclear energy be communicated directly from the nucleus to the electrons (lattice) which is not unheard of but is not a traditional nuclear pathway and requires a complex explanation. Dr. Storms examines the lattice vs. nano-crack argument from a chemical, thermodynamic and transport standpoint, pulling from what we know of nuclear product production in LENR and the physics and chemistry of hydride/deuteride systems.

Dr. Storms insists that it is simply not possible to both produce fusion and dissipate the energy inside of a lattice. His model does not rely on energy dissipation via the lattice but through a steady release of bursts of low energy photons as the Hydroton oscillates and fusion occurs. Another significant difference compared to most theories is that it explains the different results obtained using deuterium vs. using hydrogen via two different mechanisms. This is important because many early theories only focused on deuterium fusion ignoring hydrogen all together, but modern experiments show that hydrogen does indeed participate in the LENR effect.

Lastly, Dr. Storms explains the various methods of producing transmutation products, either via a fusion-fission reaction of a hydrogen containing Hydroton or by the substrate atoms becoming part of the Hydroton in deuterium containing Hydrotons. The mechanism producing tritium and helium is explained in detail as well, but will not be explained here. Dr. Storms’ theory explains all known aspects of LENR in a very new way, not requiring the limitations of the mechanism taking place directly in the substrate lattice.

This theory is testable in various manners. Dr. Storms makes some suggestions in the book including the confirmation of predicted transmutation products as well as the detection of soft radiation such as low energy photons, betas, alphas and energetic ions. Dr. Storms points out that the reason radiation is not often detected is that the expected types and energies of radiation can simply not be detected outside of the experiment, requiring in-situ soft radiation detectors. So far it seems that experimental results line up with Dr. Storms’ theory but since his theory was built around this data it is important that future experiments be compared to what is expected using his model. Single or multiple deuterium addition to the substrate in deuterium containing Hydrotons, or fusion-fission products in hydrogen containing Hydrotons, would be expected and a good place to examine the theory experimentally.

Overall this is an excellent theory which can make some predictions; it will not allow us a complete mastery of LENR but is a large step in the right direction. Most of Dr. Storms’ theory is based on traditional physics and chemistry but there are certain aspects which are not fully understood, specifically how a Hydroton releases controlled bursts of photons at very low energies before the completion of the fusion process. This is the sticking point of LENR theory—it is not so hard to explain how two atoms fuse, but how they release their huge amount of energy without creating standard hot fusion products and detectable radiation as well as destroying the lattice local where the event took place.

By investigating experimental results and applying his physics and chemistry understanding, Dr. Storms is able to produce some basic equations which explain the power produced by LENR systems and show optimal operating conditions. Like everything else Dr. Storms produces, these equations are created using first principles and basic science; a Ph.D. is not required to wrap your head around this book as well as his theory in general.

Dr. Storms’ book contains a chapter of modern theories of LENR including limitations and possible shortcomings. This inventory of theories is great because it provides an excellent balanced overview of the field from a theoretical standpoint. This combined with the overview of the field from an experimental standpoint makes this the best reference book in the field of LENR. This book is highly recommended for anyone from the student interested in learning about LENR for the first time to highly trained scientists working in the field of LENR. There will be no disappointment in the level of detail and with over 900 references it provides an incredibly organized wealth of information regarding LENR experiments and theory.

The final chapter “Future of LENR” provides a road-map forward, listing the requirements for mastering the LENR effect as well as what needs to be done experimentally to get there. One thing the book does not mention is that Dr. Storms is ready and willing to put his LENR skill-set and understanding to the ultimate test—along with other researchers Dr. Storms has proposed an experimental research program to further the understanding of LENR. Dr. Storms is currently in the process of raising money for this research program and at millions of dollars per year, this could be the Manhattan project of LENR. The only thing standing between mankind and a guaranteed increased understanding of LENR is research funding and public awareness. I urge anyone interested in LENR to inform others about this book and the field in general and those which are financially independent to contact Dr. Storms about his research proposal. — Nikita Alexandrov, Permanetix Corporation

Read the original article published on Infinite Energy.

Related Links

The Explanation of LENR Homepage http://lenrexplained.com/

Nikita Alexandrov Advanced analytic and highly parallel Cold Fusion Experimentation [.pdf] presented at the 2014 CF/LANR Colloquium at MIT.

Open Power Association Newsletter #12: 400+ parameter tests and a model

The Open Power Association at Hydrobetatron.org published Newsletter #12. The original newsletter N 012_Luglio_2014_Ottimizzato in Italian is here.

Excerpts below are google-translated to English, then, in some cases, slightly smoothed out.

********************************************
Dear Friends, there is much news this month!

open-power1
It is a matter of pride for us, as well as honor, be able to announce that Our Scientific Director Ugo Abundo has been officially invited as a speaker at: “First International Workshop on on Nuclear Syntheses Without Harmful Radiations”
Organizers: A. Bhalekar (India), C. Rope (Italy), and T. Vougiouklis (Greece)
http://www.santilli-foundation.org/ICNF-ECNAAM-2014.php

Session 110 of the ICNAAM meetings in Rhodes, Greece, September 22 to 26, 2014
http://www.icnaam.org/sessions_minisymposia.htm
TITLE: An Intrinsically Irreversible, Neural-network-like Approach to the Schrödinger Equation and some Results of Application to Drive Nuclear Synthesis Research Work

Direct-Extraction-Electricity2
010 NEW REPORT: Open Power Association Main aspects in the modeling of an electrolytic cell: effect of parametricoinvolti.

Study of Anomalies [.pdf]
Theoretical Analysis: Prof. Michele Di Lecce
Experimental Campaign: Prof. Ugo Abundo

It is also experimental evidence for the presence of anomalies that existing partial models do not wholly explain, first of all the “negative resistance” that many cite as a condition for the possibility of direct extraction of electrical energy from the natural oscillations of the plasma.

This report also analyzes the main aspects of the behavior of an electrolytic cell, in order to gain a following consistent pattern that frames the role of the parameters involved, and operational status, the complexity of the response to the operating conditions.

The data of the experimental campaign (more than 400 structured tests) conducted by varying the interelectrode voltages, the exposed electrode surfaces, the interelectrode distance, the temperature, the concentration of electrolyte, reading the resulting intensity of the circulating current and detecting any scintillations to the cathode and electromagnetic waves (frequency and intensity) show different anti-intuitive aspects.

It will be the task of a subsequent report grant the concomitant phenomena, and often antagonists, in order to obtain a model of the mechanisms, with some parameters to be estimated by means of ad-hoc tests, usable as a forecasting tool for the design and operation of equipment for plasma electrolytic.

To a classical scheme of the electrolytic cell and its power supply system, is added, in parallel to the electrodes, a series RC circuit with the load (lamp), to which the alternating voltage is monitored extremes generated, which turns on the lamp.
Full report: http://www.hydrobetatron.org/files/REPORT-n.-10_Ottimizzato.pdf

3
We are pleased to announce that by unanimous decision the Executive Our Association “Open Power” resolved to ‘inclusion as Honorary Member of: Prof. Walter A.N. Valeri “For scientific merit and Scholars”

MFMP-nominated-Nobel-Peace-Title

MFMP-NOBEL-PEACE-NOMINATION4 In the scope of the conference “Innovation and Research” held in Assisi June 28 last was the official candidate of the MFMP (Martin Fleischmann Memorial Project) and Francesco Celani for the Nobel Peace Prize.

“Innovation Research Conference on the trails of Matter and Spirit,” Gen. Murace delivery to Bob Greenyer, Francesco Celani and Ubaldo Mastromatteo for Live Open Science for Peace.
video: http://www.francescocelanienergy.org/

5
ALWAYS PRESENT! Interviews with major initiators of cold fusion in Italy:
Profs. Giuliano Preparata, Emilio Del Gudice and other researchers with limited funds braving the hostility of the official academic culture and started the first fundamental studies that have contributed to the present results. The interviews were extracted from a RAI program: Format of a few years ago.
VIDEO: http://www.youtube.com/watch?v=0_sHXk2ixbc

Brown6
WE ARE PLEASED TO ANNOUNCE ALSO THE MANAGEMENT OF OPEN POWER HAS RESOLVED THE ‘START OF A TRIAL ON THE BROWN GAS

Segnialimo ‘s article by Luciano Saporito on Brown’s Gas: Yull Brown (an Energy for the Future)
Full article: http://www.hydrobetatron.org/files/GAS-DI-BROWN_Articolo.pdf

 

gravity7
ARTICLES PUBLISHED IN THE SECTION OF HYDROBETATRON.ORG
PROF. CHRISTIAN ROPE ON GRAVITATIONAL WAVES “GRAVITATIONAL RADIATION OF FUND AS SNAPSHOT OF THE UNIVERSE PRIMORDIAL” Much has been made recently of the so-called gravitational waves, also because of the ‘”Antenna” for the detection of the same which is under construction in Cascina, near Pisa, the famous Project VIRGO …
Full article: http://www.hydrobetatron.org/files/ChristianCorda.pdf

8
“Turn Tesla patents car open-source” Elon Musk, we free the way for the creation
ARTICLE copleto: http://www.ansa.it/sito/notizie/tecnologia/hitech/2014/06/13/svolta-tesla-brevetti-auto-open-source_53a6368d-06f9-4db0-ac03-0b569dd6d28b.html

“Bicycles in the anti-aircraft bunker, when saved the life cycle”
The ancestors of our bike-generators come from the bunker of World War II, where pedaling meant to ensure the continuity of ventilation systems and ventilation
Full article: http://www.tzetze.it/2014/07/biciclette_nei_bunker_antiaerei_quando_pedalare_salvava_la_vita/

9
“Environmental Crimes 213 billion a year”
Did you know that the global environment-related crime in the name of profit goes over to any rules and rule on the enforcement of ecosystems has a turnover of about 213 billion dollars every year?
photo: unimondo.org
Full article: http://www.tzetze.it/2014/07/crimini_ambientali_per_213_miliardi_di_dollari_lanno/

New Law on Forests: Here comes the green light in the Lombardy Region for minorities and associations: “Easier to cut the woods»
Full article: http://milano.corriere.it/notizie/cronaca/14_luglio_09/nuova-legge-foreste-arriva-via-libera-regione-bda1f196-073f-11e4-99f4-bbf372cd3a67.shtml

10
“Greenhouse gas emissions: just 18% from the livestock sector”
The FAO report: “In his 2006 report ‘Livestock’s Long Shadow’, – true milestone on the subject – FAO had found that 18 per cent of all greenhouse gas emissions were caused by the livestock sector, taking into account the entire life cycle aggregate. The final report on greenhouse gas emissions will take the same approach, but using updated data and providing a disaggregated analysis of the different production systems, as well as indicating solutions for manufacturers, for the processing industry and for the political organs. ”
Full article:
http://www.lafucina.it/2014/07/09/emissioni-di-gas-serra-18-solo-da-settore-zootecnico/

“THE SECRET OF SHAME ALEMA” FEPES (Foundation for European Progressive Studies
2008 to present, the FEPS has received 16.7 million Euros!
Massimo D’Alema is committed to the FEPS, Foundation for European Progressive Studies. The former prime minister has been president since 2008.

And the public support for our Open Power Association, which is responsible for identifying energy “cheap, clean, inexhaustible”? ZERO EURO! How so?? This type of research study is unimportant? Or maybe we are not as good as those of the “FEPES”?!

“But all this confirms the mechanism of a double-track EU austerity for citizens and then payments to parties and foundations” … D ‘Alema help you …
Full article: http://www.tzetze.it/redazione/2014/06/il_vergognoso_segreto_di_dalema/index.html

11
DOES NOT SEEM REAL: “At the expense of our 70 nuclear warheads on the Italian territory”
According to a survey by L’Espresso, Italy is by far the country which holds the highest number of U.S. nuclear weapons.
Full article: http://www.tzetze.it/2014/07/a_spese_nostre_70_testate_nucleari_presenti_sul_territorio_italiano/

******************

See also:

Open Power Association Newsletter #11

Open Power Association Newsletter #10

Q&A with Ugo Abundo on forming the Open Power Association

Top