How could cold fusion reactors replace coal-fired steam power plants?

Graphic: copyright CO2CRC

Because the grade of heat generated [and recoverable] from the cold fusion processes [as of now] is modest in relation to furnace temperatures of conventional power plant [ which are in the range of 2500- 3500 deg.F (1400C-1900C)], it is not obvious to me how the existing furnace/ boiler plant can be efficiently utilized for the cold fusion processes.

However, if the CF energy cell is used directly to generate saturated steam at pressures in the range of 500-3000 psig. (pounds per square inch gauge) where boiling temperatures would be in the range of 470-700 deg.F (240C-370C) [respectively for the pressure range] and then, a separate CF energy cell is used to directly superheat that steam to 750 deg.F (400C) for a 500 psig. and to say 1000 deg.F (540C) for the 3000 psig. boiler, then that superheated steam [for what ever steam pressure system is used] could be routed to an existing steam turbine plant [with the return treated and de-aerated condensate returned as feed to the new CF fired boiler.

In summary, the existing fossil-fired boiler plant [including all fuel/ combustion air/ furnace/boiler/ash systems/flue gas systems, are all deactivated and preferably removed, and the new cold fusion powered boiler together with the cold fusion powered superheater would be integrated into the existing steam turbine generating plant [including the steam condensing plant and, of course, a modified control room].

This whole project would certainly drastically reduce emmissions to zero, but would be very costly, I suspect, because of labour costs of dismantling the majority of the power station.

It may be a better option to build new power station using the new CF boiler and superheater plant with a custom designed and compact steam turbine/ generator plant in a small modern compact building.

With the most appropriate and efficient small 25MW cold fusion powered station I would suggest the following :

Boiler outlet conditions : 500 psig. sat. steam [at 470 deg. F (240C)]
Superheater outlet conditions : 470 psig. steam at 750 deg. F (400C)
Steam Turbine outlet conditions [to steam condenser] : 1 psia. @ 10% wetness.

The practical steamrate for generating electrical power with this relatively simple, small and compact station is about 9 lbs/ kwhour so the total steamrate from the small boilers serving a single multi-stage steam turbine/generator system which exhausts to a steam condenser is 225,000 lbs/hour.

Scientists would decide how much steam capacity each boiler/superheater combo would have and that would determine how many units would be required to meet the total steam demand.

Note: The use of steam for electric power generation [via boiler and steam turbine as presently done] is really 20th. century technology and all forms of cold and hot fusion should seek to find DIRECT electrical generation processes that harness ion transfer in conjunction with an external excitation field.

The use of steam at high pressure as an electrolyte, may however make use of an abundant commodity that facilitates extreme process efficiency, and this applies to the pressurized CIHT unit where high pressure steam is extremely efficient as an electrical conductor [the electrolyte] permeating the catalyst fill [consisting of back to back catalyst discs] through micro gaps in the catalyst structure. Further the basis of direct electric power is when a stream of ions or electrons flowing and driven by an existing voltage potential, will interact with an external excitation field thus creating export electric power.


This proposed and detailed [perhaps speculative] bold upgrade to the original BLP – CIHT unit could be a blockbuster in that a compact direct energy CIHT based system, offered in a wide range of sizes and used in multi-module applications for the power generation industry, but more importantly, for the shipping industries [from private and recreational craft to commercial shipping and naval shipping including surface vessels and submarines].

This conceptual unit [or units] could be installed in the ships engine room and bypass the existing electric generating plant with out the costly removal of that plant [or in the case of nuclear powered vessels deactivate and bypass the entire systems of the existing reactor compartment].

See details on The PRESSURIZED CIHT Unit [.pdf]

6 Replies to “How could cold fusion reactors replace coal-fired steam power plants?”

  1. IIn connection with DPF have a look at plasma-vortex fusion device disclosed in Belgian patent BE9074719. Abstract in English available through ESPACENET (European patent data base).

    1. Pardon me, Cold Fusion Now is the mainstream media. Perhaps I should have said that I’m not surprised that we hear nothing about this in the conduit of mendacities.

  2. I apologize for the typing error. The correct number of the Belgian patent is BE904719.

  3. Turbines and such not stuff will move with any source of heat applied. The low pressure zone is of importance. Yet, we certainly should rethink this. No water required? Electricity? Great quantities?

    Perhaps a direct expansion (hot air) turbine, sorta like a jet turbine, spinning an electrical generator?

    Oh well, maybe 340C is good enough. Or not? Go figure.

  4. SUPERNOVA POWER! Chemonuclear Fusion is a type of low energy nuclear fusion that has been shown to produce energy in two experiments. Aneutronic nuclear fusion can provide unlimited electric power without polluting the environment with radioactive waste and greenhouse emissions. Chemonuclear processes in small dense white dwarf stars accelerate the rate of nuclear fusion and cause them to explode in spectacular supernova explosions.

    The mission of the Chemonuclear Fusion Project is to raise awareness of this new and vitally important source of environmentally clean energy and to promote research and development.

    The Chemonuclear Fusion Project is soliciting volunteers to help our crowdfunding and educational campaigns. Our crowdfunding webpages will soon be up and running. We want people to post to discussion groups and help us get the word out that aneutronic chemonuclear fusion might be the radiation free way to power the world if we can get the funding to build and test reactors.

    Artists can help us design T-shirts, mugs, and promotional items to sell and give away to our contributors. Writers to write promotional materials and post to web forums are also wanted. Video producers and professional and amateur scientists who can help the public understand the concepts of chemonuclear fusion are encouraged to contact us also.

    Visit our facebook page and give us a like. We welcome your comments and questions!

Comments are closed.