Irina Savvatimova on LENR transmutations

Dr. Irina Savvatimova is one of the giants of Russian LENR research who was able to attend the 30-year celebration organized by the Coordination Council on the Cold Nuclear Transmutation Problem of the Russian Academy of Natural Sciences (RANS).

See Russian Academy Marks Pioneering Discovery

Dr. Savvatimova is a pioneer of the glow discharge method to generate LENR and her group was one of the first to report transmutation elements from this type of experiment.

Participants in the conference of the Russian Academy of Natural Sciences “Cold fusion – 30 years: results and prospects” on March 23, 2019 in Moscow. From left to right: A.S. Sverchkov, L.V. Ivanitskaya, A.V. Nikolaev, A.A. Kornilov, A.I. Klimov, I.B. Savvatimova, A.G. Parkhomov, A.A. Prosvirnov, V.I. Grachev, S.N. Gaydamak, S.A. Flower.

She is also a research scientist at the Scientific Industrial Association LUCH working to generate isotopes for nuclear medicine.

She had already been working with glow discharge experiments and had defended a thesis on changing the structure and physico-mechanical properties of materials irradiated with hydrogen and helium ions when she heard about the announcement of Drs. Martin Fleischmann and Stanley Pons.

She quickly switched gears and began researching cold fusion, along with two new collaborative partners.

In this exclusive interview, Ruby asks Dr. Irina Savvatimova about her first experiments and the early history of CMNS research she experienced.

IS At this time, I was investigating the behavior of materials under irradiation with hydrogen and helium ions with an energy of less than 1 Kev as applied to the first wall of a fusion reactor.

The anomalous effects of changing of the density of various types of defects by optical, electron transmission and auto-ion microscopy were detected. The formation of irregular clusters of vacancies and interstitial atoms, an increase in the dislocation density by orders of magnitude, the formation of pores in the volume and blisters on the surface were founded. An increase in the diffusion rate by a factor 4–5 diffusion coefficients was discovered.

Studies of changes in the creep rate of metals and alloys under irradiation with hydrogen and helium ions were also of interest, since these changes in ion irradiation conditions correlated with available creep data under the conditions of reactor irradiation of these materials.

I talk about this in such detail, because I immediately thought that an interesting result, what Martin Fleischmann and Stanley Pons performed as Cold Fusion, could be obtained in a gas discharge – but not in electrolysis. I was ready to conduct experiments, because there was the real gas discharge installation in working condition, the palladium and other materials, as well as the hydrogen and deuterium gases. The parameters of the gas discharge to give the maximum anomalous effects of changes in the structure and properties were also determined.

Then I got a telephone call from Jan Kucherov on March 24, at the same time of discussion with my colleague V. Romodanov, about the possibility of working on Cold Fusion at our institute. He believed that no one would be interested.

Jan Kucherov asked permission to see the installation of the gas discharge, which I used at the time.

Fig 14 The glow discharge schematic, a double-walled quartz vacuum chamber with Mo anode and a cathode. Graphic LOW ENERGY NUCLEAR REACTIONS:TRANSMUTATIONS by M. Srinivasan, G. Miley and E. Storms

I asked him: “Will we do Cold Fusion?”. After a pause, he replied: “Yes.”

The next day, Jan Kucherov and Alexander Karabut came to see the installation.

By this time, all three of us had already defended dissertations and had some experimental experience.

Yan Kucherov and Alexander Karabut worked with high-power plasma installations, but their wish to conduct experiments on that equipment was not supported by the head of the laboratory, who feared an accident. So I was lucky to start working with such team of like-minded people.

We agreed that we would begin work with the existing gas discharge installation which I had already worked with. Devices for measuring radiation were found in other laboratories of the institute. A week later, we had measurement systems with gas-discharge – helium-3 sensors for neutrons detecting, radiometers with ZnS scintillators calibrated using a Pu-Be neutron source, and recording devices and oscilloscopes that made it possible to distinguish neutron signals from other pulses.

The first series of experiments on palladium was successful. We registered neutrons. It was very exciting. We could not sleep at night. Experiments on other materials (Mo, stainless steel ..) gave the smaller quantitative effect. It was understandable, because a smaller amount of deuterium could be absorbed under the same conditions. The qualitative picture was repeated when we changed the material of sample – the object of irradiation by deuterium.

Graphic: Hal Fox’s news service Fusion Facts named Yan Kucherov, Alexander Karabu and Irina Savvatimova Fusion Scientists of the Year 1992.

The head of my laboratory, Babad-Zakhryapin, reported on the first positive results of the experiments at the scientific council of the Institute a couple of weeks after the start of the experiments. A couple of months later, we tried to publish an article in the journal Successes of Physical Sciences of the Russian Academy of Sciences.

Further experiments have deepened research on the measurement of radiation by all methods available to us.

Later we learned that many groups in Russia began trying to conduct experiments on Cold Fusion, using their own techniques and/or improving electrolysis, for example, and subsequently applying plasma electrolysis.

For example, a group led by Academician B.B. Deryagin recorded neutrons during the splitting of heavy water ice back in 1986. Andrey Lipson worked with B.B. Deryagin, and later, he continued this research in CF field.

Another very vivid example is Academician A.N. Baraboshkin. Official science took a very wary direction of Cold Fusion, but A.N. Baraboshkin ventured to fund a Cold Fusion project from the funds of the Electrochemistry Division of the Russian Academy of Sciences and tried to unite several groups of researchers from different institutions, among them was our group. Funding was very modest, but the fact that the Academy of Sciences supported our research helped us.

Baraboshkin organized a section on cold fusion at the all-Union seminar “Chemistry and Hydrogen Technology” (Hydrogen-91, Zarechny) in 1991, which was attended by representatives of the Ural Polytechnic Institute, Institute of High-Temperature Electrochemistry of the Russian Academy of Sciences (RAS), Ekaterinburg, Institute of Physics- Tsarev V.A. Lugansk Machine-Building Institute – PI Golubnichy and B.I. Guzhovsky from VNIIEF Sarov, and A. Lipson of the Institute of Physics and Chemistry of the Russian Academy of Sciences.

V.F. Zelensky, Director of Kharkov Physico-Technical Ukrain, Ukrain, also actively supported this area and he himself participated in experiments.

Yuri Bazhytov founded the firm “Erzion”. He experimented with plasma electrolysis in confirmation of his Erzion theory. Yuri Bazhutov was the main organizer of the 24 Russian conferences and this is his great merit.

Since 1990, seminars have begun to be held in academic and industry institutes. And since 1991, a seminar has already operated at the Peoples’ Friendship University under the guidance of N.V. Samsonenko (now passed the 90th seminar). Activity in this area has increased.

The All-Union seminar “Hydrogen-91”, where there were more than half of the works devoted to studies on cold fusion, most of the participants had worked in this direction a long time.

The first All-Russian Conference was held in 1993. The proceedings of this conference were held under the name Cold Nuclear Fusion, and later the conference was called Cold Fusion and Nuclear Transmutation. Before the first Russian conference, a conference was held in Belarus, where we had an opportunity to report the results of work.

I want to tell about many groups which conducted own successful investigation in this area. I am not sure that it is possible at this time.

Now a lot of research groups work in LENR direction.

RUBY    What have been some of the transmutation products you’ve discovered?

IS I had experience with a glow discharge for more than 10 years before the CF, work has already been done on studying changes in structure and properties, so for me the study of transmutation was just a more in-depth comprehensive study of the process. The study of the elemental and isotopic composition showed the appearance of elements – that were absent before the experiments – in the sample material and the structural parts of the discharge chamber.

Changes in the elemental and isotopic composition were also tested in different laboratories and institutes by all possible methods. Analysis of the elemental composition on an electron microscope (EDS) revealed the preferential location along the boundaries and sub-boundaries of the grains, where additional impurity elements that were not present in the sample – and elements in the discharge chamber that weren’t there before the experiment. This effect was discovered by our colleague Alexei Senchukov when analyzing samples using a Hitachi electron microscope. He significantly increased the duration of the recording of the spectra, which had not been done before by anyone. Tuning the device to identify specific elements, it was found that various impurity elements can be localized in different places (Transaction of Fusion Technology –ICCF-4,1993// ANS, December 1994// Savvatimova et al, Cathode change after Glow Discharge, 389-394).

The such elements as Sc, V, Cd, In, P, Cl, Br, Ge, As, Kr, Sr, Y, Ru are never present in the discharge chamber, but these elements were found in the Pd foils after experiments with different ions (H, D, Ar) almost always.

Changes in the isotopic composition of samples irradiated with hydrogen and deuterium were studied by mass spectrometry, Secondary Ions Mass-spectrometry, Spark Mass-spectrometry, Thermoionisation Mass-spectrometry. Several elements were observed using SMS with an isotope ratio deviating from the natural isotope abundance by a factor of two or three, such as   6Li/7Li;10B/11B; 12C/13C; 60Ni/61Ni/62Ni; 40Ca/44Ca; and 90Zr/91Zr.  Deviation from the natural ratio of Ag isotopes 109/107 as 3/1 to 9/1, natural composition is 1/1) in palladium cathode. The significant change of the Pd isotopic composition was observed using SIMS also.

So, the elemental and isotopic structure of the cathode materials before and after Glow Discharge (GD) experiments were analyzed by EDS, SNMS and SMS. The isotope shift tendency in Pd and Pd alloys and Ag was observed. The comparison of the quantity of impurity elements change and generation was made.

The four same groups of certain impurities were repeatedly formed after Deuteron irradiation in similar conditions: light – with masses of 6, 7 10, 11 19, 20, 22; of middle masses near 0,5 matrix element; (± 10) of matrix element – Cd, Sn, Ag and of heavy masses (120 -140)  Sn, Te, Ba).

The quantity of additional impurities, which was found after ion irradiation in Pd and Pd alloys, can to show in the following row with decreasing: Pd, alloys PdPTW, PdNi, PdRu, PdCu.

The qualitative correlation of the maximum increase of impurities in the cathodes with the minimum heat output during GD experiment was noticed for temperature interval less 200oC (ICCF-7).

Later, similar studies on changes in the elemental and isotopic composition were carried out on titanium (ICCF-10).

However, all the effects of transmutation with an increase in the content of individual elements up to 100 times or more, with a change in the isotopic composition, could not convince critics that such changes were a reality.

Only an experiment with radioactive material could convince these people, so it was another happy occasion when John Dash invited me to Portland State University to conduct research with uranium.

As a result of this work, we were able to show the presence of alpha, beta and gammas. The alpha activity of Uranium increased after irradiation with hydrogen and deuterium ions about 2-4 times, and beta and gamma emission increased from 10 to 60%.

Emission registration on films during glow discharge experiments ICCF-9 [.pdf]

Along with the fascinating increase of alpha activity, an increase in the amount of thorium (EDS) and a decrease in uranium is observed by chemical analysis (MIT) and by observing the intensity of peaks in the spectra of characteristic radiation of uranium (x-ray data) decrease.

The first publications of these results were reported to ICCF-3 (1992), ICCF-4(1993) and Russian Conferences and Seminars, Russian “Letters in Journal of Technical physics” 1990

Possible Nuclear Reactions Mechanisms at Glow Discharge in Deuterium ICCF-3 [.pdf]

Cathode Material Change after Deuterium Glow Discharge Experiments ICCF-4 [.pdf]

Photo from Proceedings of ICCF-3 Frontiers of Cold Fusion. ICCF-3 Group photo, 1992.

The presence of low-energy nuclear reactions was confirmed by the GD low-energy influence. Some observations were:

– Significant increase in additional elements ranging 10 -1000 times was found.

– Isotopic deviation in materials (Pd, Ti, W, and U) and the increase in the additional impurity elements from 2 up to 100 times was discovered.

– The majority of the newly formed elements, found after the GD switch off were found in certain local zones (“hot” spots, micro melting points) on the cathode material surface.

– Post-experimental isotopes with masses of 169, 170, 171, 178, and 181 (less than W and Ta isotopes) were found with the help of TIMS.

– The isotopic changes continue to occur for at least 3–5 months after the GD exposure. Separate isotopes with masses less than W and Ta isotopes have grown by factors ranging 5–1000 times.

– The change in alpha, beta, gamma radioactivity caused by the GD was observed in Uranium.

.The correlation between X-ray emission data and the thermal ionization mass-spectrometry. Data for the same isotopes is shown in the W foils. The comparison of the mass spectra and the gamma spectra shown to the existence of Yb and Hf, isotopes in W after experiments in Deuterium.


The collection of effects confirms availability of nuclear transmutations under exposure to GD (Glow Discharge) low-energy ions bombardment in materials and in other processes.

The GD low-energy influence can be used in new power engineering and new technologies (e.g., isotope production). The described effects should be paid more attention to.

I studied structural changes and the physico-mechanical properties of materials under irradiation with hydrogen, deuterium and helium ions in a plasma discharge with hydrogen ion energies of less than 1 keV deuterium as applied to the first wall of a thermonuclear reactor. These studies were carried out at a gas discharge installation.

I studied these changes because presumably 95% of the ions bombarding the first wall of a thermonuclear reactor should have had H and D ions with energies of less than 1 keV.

Anomalous effects have been observed. Including, there was a blackening of the X-ray film located outside the discharge chamber. However, everyone said that this was not possible with ion energies of less than 1 KeV.


RUBY Could you describe the design of the experiments you performed, what metals you’ve used for cathodes, and how you’ve measured?

The greatest number of experiments was carried out on palladium. After the first experiments the studies were conducted on an EDS electron microscope.

The presence of low-energy nuclear reactions in Glow discharge was confirmed by formation in W (tungsten) of isotopes with mass less than matrix mass (ytterbium and hafnium with 169 -178 masses)

– Significant increase in additional elements ranging 10 -1000 times was found (– Isotopic deviation in materials (Pd, Ti, W, and U) and the increase in the additional impurity elements from 2 up to 100 times was discovered.

– The majority of the newly formed elements, found after the GD switch off were found in certain local zones (“hot” spots, micro melting points, microexplosions) on the cathode material surface.

Graphic from Nuclear Reaction Products Registration on the Cathode after Glow Discharge ICCF-5 by I.B. Savvatimova and A.B. Karabut 1995

– Post-experimental isotopes with masses of 169, 170, 171, 178, and 181 (less than W and Ta isotopes) were found with the help of TIMS.

– The isotopic changes continue to occur for at least 3–5 months after the GD exposure.

Separate isotopes with masses less than W and Ta isotopes have grown by factors ranging 5–1000 times.

– The same energy peaks in gamma-spectra occur during and after the GD current switch-off.

– The Significant change in alpha, beta, gamma radioactivity in uranium after GD in Deuterium and Hydrogen was observed. The increase of alpha, beta, gamma-emission are kept without change during of the duration of measurement – 1 year (after 2, 4, 5, 12 months)

– Post experiments weak gamma, X-ray and beta- emissions were detected.

(2) The correlation between the gamma and X-ray emission data and the thermal ionization mass-spectrometry data for the same isotopes is shown in the W foils.

The comparison of the mass spectra and the gamma spectra points to the existence of the following isotopes Ytterbium and Hafnium: 169, 170, 171m, 172, 178

 (3) The collection of effects confirms availability of nuclear transformations under exposure to GD low-energy ions bombardment in materials and in other processes.

(4) The GD low-energy influence can be used in new power engineering and new technologies (e.g., isotope production). The described effects should be paid more attention to.

RUBY    It’s been speculated that some of the transmutation elements found are from a fusion – and then fission – reaction.  Is that probable in your mind?

IS Yes, of course.  Some variants of possible reactions are in our articles.

1D2 74W186    ®    72Hf178  + 3Li10*

(1+)(+13 MeV) + (0+)(-45.7 MeV)® (0+)(-52.4 MeV) + (2+)(+20.9 MeV) +1.2 MeV  [∆1+]

3Li10* ® n + 3Li9*

(1-, 2-) (1.2MeV) (+33.05 MeV) ® (1/2+)(+7.3 MeV) + (3/2-)(+24.95 MeV) +2 MeV [∆ 1-]

  3Li9*® 178ms: b ®4Be9+ 13.61MeV

(3/2-)(+24.95) ®(3/2-)(+11.34)+ 13.61MeV ;

RUBY   You have found transmutations of elements in localized spots, and also at grain boundaries.  What does this experimental evidence tell you in regards to a theory of this reaction?

IS Yes, it is true. The majority of the newly formed elements, found after the GD switch off were found in certain local zones (“hot” spots, micro melting points, micro-explosions) on the cathode material surface.

It is clear that low-energy plasma initiates the processes of nuclear transmutations.

There are many theories and hypotheses, with the help of some of which, one can explain a part of the observed anomalies. But in the real material there are a lot of processes being performed, and it is very difficult to take into account all of them. Therefore, a single theory or hypothesis cannot explain the whole set of processes.

So in places where defects and inhomogeneities accumulate, there can be a change in the density of the of bombarding ions and a change in the electric field strength to high voltages leading to a microexplosion. In the resulting pores in the process of ion bombardment, the pressure can increase to hundreds of atmospheres. Grain boundaries can trigger an acceleration effect. This is if you approach the explanation from the standpoint of interactions at the macro level.

RUBY   Why is this research so important for the world?

IS These studies in the field of “subliminal (as my colleague Rodionov Boris says) energies” could help to understand many natural phenomena and solve the problems of contamination of the planet with radioactive waste, as well as help in the intensification of many technological processes. It is also possible to use this knowledge to expressly predict the behavior of materials under irradiation conditions.

Apparently, the society is not yet ready to use LENR processes for solving energy problems. The society, or those who rule it, does not need a success in solving the energy problem on the planet.

For a while I did not have the opportunity to work in the direction of Cold Fusion. I was engaged in a project to develop targets for the generation of isotopes for nuclear medicine.

If the situation allows, then I would like to apply the Cold Fusion tricks to solve real-world projects that could be useful now.

RUBY   Could you say a bit what it was like to work with Drs. Karabut and Kucharov?  Describe their contribution to condensed matter nuclear science.

IS I thank fate that it developed so that we began to work together and everyone was able to do something that was not able or did not know another. Result – the general inventions and patents, good publications. Jean-Pierre Vejie after our reports at a conference in Donetsk visited our laboratory. He was present at an experiment. After the visit to laboratory He suggested to publish our article in Physics Letters. At that time He was some of their editors of this magazine. We well supplemented each other at the initial stage of work.

If collaboration was continued slightly longer, perhaps progress would be more considerable.

Alexander Karabut (right), then the interpreter Natalia Famina (center right), Ludwik Kowalski (center left), and Irina Savvatimova (left) in Japan, December 2006.

Yan Kucherov knew better than others nuclear physics and was an arbitrator in these questions. Its first hypotheses of simultaneous course of processes of synthesis and disintegration are reflected in the publication at a conference in Nagoya. A.Karabut modernized the glow discharge installation for estimation of thermal effect. They competently gathered a measuring chain for registration of neutrons and gamma. Later Karabut could decipher possible decay chains in gamma spectra. This results was confirmed also by mass spectrometry.

RUBY   Dr. Savvatimova, can you tell us what you are working on now?

IS For a while I did not have the opportunity to work in the direction of Cold Fusion. I was engaged in a project to develop targets for the generation of isotopes for nuclear medicine.

If the situation allows, then I would like to apply the Cold Fusion tricks to solve real-world projects that could be useful now.

RUBY   Why is this research so important for the world?

-The collection of effects (alpha, beta, gamma-emission on the uranium) confirms availability of nuclear transformations under exposure to GD low-energy ions bombardment in materials.

The low energy nuclear reactions (subthreshold nuclear reaction) are exist. These process can be used in the different fields of science and technology. Glow discharge low-energy impact can be used in new power engineering and new technologies (e.g., isotopes production, creating special alloys with improved properties, which cannot be create by other method).

The described effects should be paid more attention to. Unfortunately, the society doesn’t think it needs these achievements now (or part of society).

Understandably, for improvement success and great achievements, the good group of researchers and modern equipment and financial support are necessary.

The great Russian poet written ” It is pity to live in this beautiful time there will be neither you nor me”.

Early papers:

1. Karabut A. B., Kucherov Ya. R., Savvatimova I.B. Physics Letters A, 170, 265-272 (1992).

2. Karabut A.B., Kucherov Ya.R., Savvatimova I.B. Proc. ICCF-3, 1992, Nagoya, p.165. Possible Nuclear Reactions Mechanisms at Glow Discharge in Deuterium [.pdf]

3. Karabut A. B., Kucherov Ya. R., Savvatimova I.B.  Fus.Tech., Dec. 1991, v. 20(4.), part 2, p.294.

4. Savvatimova I., Kucherov Ya. and Karabut A., Trans. of Fus. Tech.: v.26, 4T (1994), pp. 389-394

5. Savvatimova I.B, Karabut A. B. Proc., ICCF5, Monte-Carlo, 1995, p.209-212; p.213-222 Radioactivity of the Cathode Samples after Glow Discharge [.pdf]

6. Karabut A.B, Kucherov Ya. R., Savvatimova I.B ICCF5, Monte-Carlo, 1995, p.223-226; p.241 Nuclear Reaction Products Registration on the Cathode after Glow Discharge [.pdf]

7. Savvatimova I.B, Karabut A. B. Poverhnost (Surface), V. 1, Moscow: RAN, 1996, p.63-75;.76-81

8. Savvatimova I.B Proc.of 3 Rus.Con­f. Cold Fus. & Nuc.Transm., Sochy-95, Moscow, 1996, p.20-49

9.  Savvatimova I.B, Karabut A. B. Mat. 2 Russia Conf. On Cold Nucl. Fus. and Nuclear Transmutation. -Sochy, Sep. 19-23 1994, Moscow, 1995, page 184.

For more on the work of Dr. Irina Savvatimova, go to this list of papers, or, search the LENR Library Archive at

The 22nd International Conference on Condensed Matter Nuclear Science ICCF22 convenes September 8-13, 2019 in Assisi, Italy. To Regsiter, go to the International Society of Condensed Matter Nuclear Science website at

Today is F-Day!

On May 8, 1989, the Electrochemical Society held their spring meeting in Los Angeles amid the frenzied controversy of the cold fusion announcement, and declared it F-Day!

This was on the heels of the 1989 American Physical Society meeting that began May 1 in Baltimore, where disgruntled physicists who failed to replicate the findings gathered together to congratulate each other for saving science from amateurs. After all, they knew nuclear theory, and chemists did not. Some of the biggest insults hurled by the mainstream physicists came from scientists with the MIT Plasma Fusion Laboratory and Caltech.

Electrochemist Nathan Lewis was from Caltech and claimed to have seen no effect. As it turned out, his experiment was woefully marred. [See Examples of Isoperibolic Calorimetry in the Cold Fusion Controversy by Melvin H. Miles J. Condensed Matter Nucl. Sci. 13 (2014) 392–400] Still, Dr. Lewis showed solidarity with physicists by claiming “that their device “violates the first law of thermodynamics,” that is, the conservation of energy or, as is often said, “the universe offers no free lunch”.

That’s how Eugene Mallove tells it in his Pulitzer Prize-nominated book Fire from Ice Searching for the Truth Behind the Cold Fusion Furor.

I’ve seen Youtube video of him frothing at the mouth while angrily asserting that Drs. Fleischmann and Pons had not “stirred their cells” properly.

Physicist Steve Koonin, a colleague of Nathan Lewis’s at Caltech, as well as future BP Oil exec and Department of Energy Secretary, said, “If fusion were taking place, we would see radiation in one form or another, and you would simply not be able to hide that radiation.”

Of course, this is what makes cold fusion/LENR so attractive. Not only do we get fusion-sized energy from tiny table-top cells that use a fuel of water, the heat energy is derived from a new type of reaction that generates no deadly radiation, as well as no CO2! Oh, Steve.

Eugene Mallove writes in his book Fire From Ice:

“…that Dr. Koonin also told New York Times reporter Malcolm Browne at the time of the meeting, “It’s all very well to theorize about how cold fusion in a palladium cathode might take place … one could also theorize about how pigs would behave if they had wings. But pigs don’t have wings.”

Nathan Lewis (L), Steve Koonin (Middle), and Charles Barnes (R) of Caltech. Usurping the scientific process, and believing a 100-year-old theory over the experimental facts, these three men helped to close down research on what could have been clean fusion energy technology. Photo: Interview with Charles Barnes Caltech Oral Histories

Dr. Steve Koonin further disgraced himself for all historical time by saying “My conclusion is that the experiments are just wrong and that we are suffering from the incompetence and delusion of Doctors Pons and Fleischmann.”

While the Baltimore meeting allowed physicists to vent their failures with misery as company, the lowest point for the American Physical Society was reached when Dr. Steve Jones from Brigham-Young University led a panel at a news conference. Steve Jones, of course, the very reason why the March 23, 1989 news conference was held in the first place.

It was after five years of research that Drs. Fleischmann and Pons decided to get funding for their experiments. The US Department of Energy gave their proposal to Dr. Steve Jones for review. Dr. Jones had been previously working on a different kind of muon-catalyzed fusion, but had given it up for lack of results. (He claimed to get neutrons, though no one has ever reproduced his results.)

When Jones saw what the pair from University of Utah were up to, he was excited enough to jump back in, and he contacted Drs. Fleischmann and Pons – not a normal procedure in the application process – to invite them down for a visit to see his neutron detector. In the end of February 1989, while they visited, Steve Jones told Drs. Fleischmann and Pons that he would be announcing his own form of “cold fusion” in May, but, if they wanted to publish papers at the same time, he would be willing to do that.

Huh? Martin Fleischmann and Stanley Pons wanted nothing more than to get their funding and keep working, but upon arriving back at the University of Utah, administrators and lawyers were fearful of losing the “first place” of announcing this new kind of energy-producing experiment. The two electrochemists were prodded into making the news conference announcement anyway, beating Jones’ own announcement.

At the Baltimore meeting of physicists, Dr. Jones, perhaps still sore from being one-upped on his one-up, made poor scientific judgement by polling with a show of hands in order to determine whether cold fusion was dead, as documented by Steven Krivit on his website.

Eugene Mallove wrote in Fire From Ice:

Finally, “science by press conference” occurred again, degenerating even further into “science by poll.” At a news conference on the second day of the Baltimore cold fusion fest, Steve Jones asked for an impromptu “straw poll.” He asked nine of the session’s leading speakers whether they were at least 95 percent confident that the University of Utah claim to have generated heat by fusion could be ruled out. Eight answered “yes” and one, Rafelski, Jones’s colleague, wisely withheld judgment. Rafelski commented, “This should not be taken as the matter is settled.” However, Yale physicist Moshe Gai said of his group’s work, “Our results exclude without any doubt the Pons and Fleischmann results.” The panel voted more favorably on whether the claim that neutrons were being seen in a number of cold fusion experiments could be ruled out—three of nine kept an open mind.”

May 2, 1989 Physicist Steve Jones takes a vote on whether or cold fusion is “dead”. Photo: New Energy Times if you can’t tell.

To have the top physicists in the country ridiculing the scientific process with such ugly outrage showed weak stature in scientific thinking, but these physicists were successful in having the tide turn against Drs. Fleischmann and Pons’ work. Their excess heat effects were now completely suspect.

Thus, when the May 8 meeting of the Electrochemical Society began, electrochemist Dr. Nathan Lewis of Caltech was confident in his superior knowledge. Nevertheless, there were 1600 attendees who were less assured.

From Fire and Ice, we get a list of positive results being reported from very competent and open-minded scientists. Eugene Mallove writes:

Everyone was awaiting May 8, when at the special cold fusion session of the Electrochemical Society spring meeting in Los Angeles, Fleischmann and Pons were supposed to present a “thorough, clean analysis” of the thermal aspects of their experiment. Pons told Jacobsen- Wells of the Deseret News, “We are going to supply all the information that we can. People evidently are misunderstanding a lot about calorimetry. A lot of people are making calorimetric measurements with instruments that may not be suitable for these experiments.”

The meeting began with controversy over the relative absence of critical scientists; had it been arranged to be a celebration of only positive results? Lewis of Caltech was present at least as a token skeptic. As he had done in Baltimore, he proclaimed his numerous permutations and combinations of materials and conditions, all of which had failed to show excess power or nuclear products. “I’d be happy to say this is fusion as soon as somebody shows that it is,” a self-assured Lewis told the 1,600 assembled. Fleischmann and Pons were having no trouble. Now they were claiming to get bursts of heat lasting a few days up to 50 times the power input to their cell—the claim was even more extreme than before! Was this a tip-off that they were really onto something, or that they had completely gone off the deep end? To rebut Lewis, they showed a brief film clip of a bubbling cell in which they had injected red dye. Within 20 seconds the dye had spread uniformly through the cell, intuitively giving the lie to Lewis’s accusation about improper stirring.

Concerning their neutron results, Fleischmann and Pons backed off a bit, acknowledging reluctantly that their measurements were deficient and were the “least satisfactory” part of their research. They said that they would rerun their experiment with a new detector. More disturbing was their withholding of the long-awaited and promised 4He measurements. There was an emerging feeling (not necessarily a correct one) that if there were no copious neutrons, there had to be helium-4 to make the claim for a nuclear process. The Fleischmann-Pons rods were being analyzed for helium by Johnson-Matthey Corporation, the 170-year-old British precious metals supplier, under an agreement of exclusivity with the company. This was the presumed reason for the turning down of many other offers to do the rod “autopsy.” Fleischmann had admitted at the meeting that if no helium were to turn up, “it would eliminate a very strong part of our understanding of the experiment.”

Bockris from Texas A&M, Huggins from Stanford, and Uziel Landau from Case Western all backed up the Utah duo with positive heat measurements. At a press conference Huggins said, “… It’s fair to say that something very unusual and large is happening. There is conclusive evidence there is a lot of heat generated here—much larger than the proposed chemical reactions that people suggest might be happening.” A thinly veiled criticism of physicists by a Society official, Dr. Bruce Deal, drew applause: “Unlike other societies, we do not attempt to solve complex technical problems by a show of hands.” But not every electrochemist left the meeting convinced. The experiments were subtle, apparently difficult to reproduce consistently, and of course totally unexplained. Steve Jones again reiterated his faith in his neutrons and disbelief on the question of heat—at least in cold fusion cells. Cold fusion might still be partly responsible, he thought, for the hellish conditions inside the planet.

Soon cold fusion would face increasingly acid opposition. Martin Deutsch, professor of physics emeritus at MIT had told Science News, “In one word, it’s garbage.” (Science News, Vol. 135, May 6, 1989.) Some media had essentially written it off. Scientists who had genuinely tried to make cold fusion happen, but who for reasons still not clear could not coax their cells into working, would be joining the ranks of the opposition. They were frustrated and mad. They had wasted precious research time chasing rainbows. Enough was enough! Time to move on.

But those who believed in the tantalizing results of some experiments would not be stilled. Others who were bold enough to theorize about fantastic mechanisms to explain cold fusion did not give up either. They persevered, egged on by the serious critics.

If people were having trouble finding neutrons, perhaps the mysterious “cold fusion” was a kind of nuclear reaction that was largely neutronless—as the MIT analysis seemed to suggest. As skeptic Petrasso himself would say in January 1990 at a lecture at the PFC, “We may turn out to be the big allies of Fleischmann and Pons if they can now prove that they have fusion, because what we’ve demonstrated now is that they basically didn’t have any neutrons at all coming from their heat-producing cell….So now they can claim that they are having neutronless heat generation.” If this turns out to be true, a mind-boggling technological revolution may be in store for us.

The cover of Time magazine on May 8, 1989. Fusion or Illusion? Two obscure chemists stir up a fascinating controversy in the lab, but new tests challenge their hopes of creating limitless energy By Michael D. Lemonick.

So it was that cold fusion became the “pariah science” despite so many positive results, and the Electrochemical Society proclaimed May 8 to be F-day. While I imagine that means Fusion Day, one could fill in F-day with other words, for though the ugly attitudes have stopped spraying spittle as they emote, the lasting effects of these lost years have yet to be measured.

What would have been different if these physicists had only kept to their scientific oath, to follow a method “consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.

Lucky for us, Caltech, MIT, the Department of Energy, the USPTO – it’s a long list – were not able to stop the research. Today, we are nearing commercially-available technology using condensed matter nuclear science, the field which Drs. Martin Fleischmann and Stanley Pons discovered. It’s 30-years late, but after rolling that long, we can expect an avalanche of announcements that will flip the narrative of failure that mainstream physicists have perpetrated. The failure is their own.

These men who de-railed our future should apologize to Dr. Martin Fleischmann (posthumously) and Dr. Stanley Pons (still underground), and us. The best way would be to urge their colleagues at the current Department of Energy to recognize CMNS science and start funding science research so we can get a technology fast. Or, we can just let them fade away, on the wrong side of history forever.

Get Eugene Mallove’s Fire From Ice from the New Energy Foundation online store here!

The 22 International Conference on Condensed Matter Nuclear Science on September 8-13, 2019. Registration now open!

Dimiter Alexandrov on the Cold Fusion Now! podcast

Listen to episode #23 of the Cold Fusion Now! podcast with Ruby Carat and Special Guest Dr. Dimiter Alexandrov, a Professor of Electrical Engineering and Head of the Semiconductor Research Center at Lakehead University in Thunder Bay , Canada.

He talks with Ruby about his transition to LENR research.

Go to the Cold Fusion Now! podcast page to listen to Dr. Dimiter Alexandrov.

“It was exactly 30 years ago when I read about the first cold fusion experiments. My current involvement in the LENR research is based on experimental research outcomes got accidentally two years ago,” says Dr. Alexandrov.

His materials and electronics research led him to investigate deuterium and hydrogen plasma for the purpose of manufacturing semiconductors.

“The palladium specimen was placed on the sample holder and deuterium nitrogen gas mixture was directed to the specimen in the environment of inflated hydrogen.”

Slide from Dimiter Alexandrov presentation at the LANR/CF Colloquium at MIT March 23, 2019.

“During the experiments, I found the release of helium, especially the lighter stable isotope helium-3, and another stable isotope helium-4. I also found there is a correlation between the heat release and the release of helium.”

“For me, it was apparent that I was observing low energy nuclear reaction. I would like to determine if it was cold nuclear fusion because, in fact, the initial products were deuterium, and hydrogen – hydrogen was actually coming from the environment – and their interactions with the metals. Generally speaking the end products were helium. There is no other way other than to conclude that cold fusion has occurred.”

Two different methods to determine helium production at the sample were used.

“One way was mass spectroscopy. It was clear we had a release of helium-3. However, mass spectroscopy cannot distinguish helium-4 from molecular deuterium.”

Semiconductor Research Center laboratory equipment from Dimiter Alexandrov’s presentation at 2019 LANR/CF Colloquium at MIT.

“That’s why additional experiments were done, and I was lucky I found there was a release of helium-hydride, that is helium-4-hydride, and, the mass spectroscopy showed clearly that helium-hydride had been released”, explains Dr. Alexandrov.

Helium-hydride is a positively-charged ion, a helium atom bonded to a hydrogen atom, with one electron removed. He reasons that the helium-hydride could not occur unless helium was produced in the main chamber.

“I did additional experiments in order to confirm we are talking exactly about helium gas, and these experiments were connected with optical spectroscopy of the excited gasses immediately above the sample holder. This optical spectroscopy shows very clear peaks about helium, which means we have optical radiation from the excited helium, and actually, it shows a typical peak for helium-4 and one peak pertaining to helium-3.”

He also finds a temperature change that cycles up and down, correlating with the cycles of helium-4 concentration. The temperature of the sample holder, begins at room temperature, but after interacting with the deuterium gasses in the hydrogen environment, the temperature increases about 3 degrees Centrigrade for approximately 15 minutes or so, and then drops back down to initial temperature, and then increasing again, etc.

Sample temperature (Red) and Helium-3 (Blue) concentration in the sample main chamber.

“I observed several cycles, and several times this happened, and the cycles of the temperature change correlate with the cycles of concentration of helium-3 in the main chamber. The heat release happens because of the creation of helium-3, and helium-4 as well”, he says.

Dr. Alexandrov recently presented at the 2019 LANR/CF Colloquium at MIT with Synthesis of Helium Isotopes in Interaction of Deuterium Nuclei with Metals [.pdf]

What’s next for this repeatable experimental effect?

Go to the podcast page to listen to Dr. Dimiter Alexandrov discuss his LENR research with Ruby Carat on the Cold Fusion Now! podcast.

The 22nd International Conference on Condensed Matter Nuclear Science ICCF-22 in Assisi, Italy on September 8-13, 2019.

President Bush “briefed” on cold fusion

In 1989, Dr. Glenn Seaborg was asked to brief President George H. W. Bush on the “cold fusion” phenomenon. On April 14 of that year he did so.

April 14, 1989 Nobel Laureate Glenn Seaborg talks to President Bush about cold fusion. Photo from Reflections on the Legacy of a Legend Glenn T. Seaborg 1912–1999 by David L. Clark and David E. Hobart

Eugene F. Mallove wrote in Intimations of Disaster: Glenn Seaborg, the Scientific Process, and the Origin of the “Cold Fusion War” [.pdf]:

Even though the jury was certainly still out on the evidence for
or against “cold fusion,” Seaborg, through some as-yet-to-be-revealed process (though he certainly had conducted no experiments), had determined that cold fusion was not what it was claimed to be. On April 14, 1989 Seaborg told President Bush that “it is not due to nuclear fusion.”

We discovered this extremely revealing account of Glenn Seaborg’s actions in the spring of 1989, which appeared in an issue of Skeptical Inquirer, November/December 1997, as part of “The Elemental Man: An Interview with Glenn T. Seaborg”.

SI: During the early stages of the cold fusion furor, President Bush asked you to come to the White House and give him your views on the matter. What happened? What did you tell him?

Seaborg: In April 1989, I was called back to Washington to brief George Bush on “cold fusion,” the totally unexpected phenomenon that University of Utah scientists announced they had discovered by the simple process of electrolysis of heavy water. A couple of days earlier, the purported co-discoverer of “cold fusion,” University of Utah electrochemist Stanley Pons, spoke to an enthusiastic standingroom-only audience of chemists at the semi-annual meeting of the American Chemical Society in Dallas. His talk had attracted so much attention that, apparently, the news had reached the White House. After briefing White House Chief of Staff John Sununu, I went into the Oval Office to brief President Bush on April 14, 1989. I told him about my role in the discovery of the radioactive iodine that had been used a couple of days earlier to treat his wife, Barbara, and said that a similar treatment with radioactive iodine had effected a miraculous cure for my mother, who was suffering from the same condition as Barbara. The president facetiously said that Barbara is now radioactive and she is not allowed to kiss their dog as long as this condition prevails, but he implied that it didn’t seem that this prohibition included himself—the president. I then went on and described briefly the situation with respect to cold fusion. I indicated that this is not a valid observation—that is, that it is not due to nuclear fusion—but, on the other hand, it must be investigated. The president seemed very interested and convinced by my assessment, and encouraged us very much to go ahead with an investigation. [Infinite Energy’s emphasis]

I might add that the panel I recommended to study the purported “cold fusion” process was created and about six months later came out with a report disputing the validity of the observation, pretty much in line with the view I adopted in my briefing of the president. Also it is interesting to note that President Bush himself, two years later, in May 1991, benefitted from treatment with the same radioactive iodine (iodine-131).
—(End of the Skeptical Inquirer interview section)—

–From Eugene Mallove’s Intimations of Disaster: Glenn Seaborg, the Scientific Process, and the Origin of the “Cold Fusion War” [.pdf]:

Dr. Seaborg received the Presidential National Medal of Science from President Bush in 1991.

Stanley Pons speaks at the ACS in 1989

On April 12, 1989, American Chemical Society (ACS) President Clayton Callis hosted a special Presidents Event “Nuclear Fusion in a Test Tube” at the 197th Annual Meeting of the ACS in Dallas, Texas. Valerie Kuck of AT&T Bell Laboratories organized the Symposium and introduced the speakers.

Special guest Dr. Stanley Pons spoke on the then recently announced discovery of the Fleischmann-Pons Anomalous Heat Effect. Watch the entire set of talks courtesy of the New Energy Foundation.

The initial panel included Harold Furth, Director of Princeton University’s Plasma Physics Lab, Allen Bard from University of Texas, Ernest Yeager of Case Western Reserve University, Stanley Pons from University of Utah, and K. Birgitta Whaley of University of California – Berkley.

Here is the introduction to the meeting:

Dr. Stanley Pons presented, and here’s his talk.

Russian Academy of Natural Sciences Marks 30th Anniversary of Pioneering Discovery

This is a re-post of a google-translate of the article first published on here. Any use of materials is allowed only if there is a hyperlink to REGNUM news agency. The original article has been re-formatted slightly.

On the conference of the Coordination Council on the issue of “Cold nuclear transmutation” of the Russian Academy of Natural Sciences on March 23, 2019, dedicated to the 30th anniversary of the press conference of Martin Fleischmann and Stanley Pons on cold nuclear fusion

Dr. Martin Fleischmann (R) and Dr. Stanley Pons (L) announcing discovery of breakthrough science in energy production.

On March 23, 2019, the REGNUM press center hosted the30th Anniversary Cold Fusion Synthesis Conference: Results and Prospects, organized by the Coordination Council on the Cold Nuclear Transmutation Problem of the Russian Academy of Natural Sciences (RANS).

The main task of the one-day conference is to tell about the history of cold nuclear fusion research in the USSR and the Russian Federation, about the most promising domestic developments in this area and substantiate the thesis about the beginning of a new phase of cold fusion research – the stage of its industrial implementation.

Participants in the conference of the Russian Academy of Natural Sciences “Cold fusion – 30 years: results and prospects” on March 23, 2019 in Moscow. From left to right: A.S. Sverchkov, L.V. Ivanitskaya, A.V. Nikolaev, A.A. Kornilov, A.I. Klimov, I.B. Savvatimova, A.G. Parkhomov, A.A. Prosvirnov, V.I. Grachev, S.N. Gaydamak, S.A. Flowers

It so happened that this conference was the first event of the Coordination Council, organized more than a year ago. Such a long delay was due to the fact that, in 2018, two of its organizers and co-chair passed away, the theoretical physicist Anri Amvrosiyevich Rukhadze (09.07.1930 — 07.03.2018) the creator of the Soviet beam weapons passed away in July, and the nuclear physicist, the permanent organizer, and the organizer of the Russian and international conferences on cold fusion and ball lightning, Yuri Nikolayevich Bazhutov (04/21/1947 – 03/09/2018) passed away in March.

Anri Amvrosiyevich Rukhadze and Yury Nikolayevich Bazhutov, Organizers of the Coordination Council of the Russian Academy of Natural Sciences for the Cold Kernel Transmutation Problem

By the decision of the Presidium of the Academy of Natural Sciences, a new chairman of the council was elected the chief researcher of the Institute of Physics of the Earth, O. Yu. Schmidt of the Russian Academy of Sciences, Corresponding Member of the Russian Academy of Sciences, Academician of the Russian Academy of Natural Sciences, Doctor of Physics and Mathematics Alexei Vsevolodovich Nikolaev, and his co-chairs were the Physics Faculty of Moscow State University. MV Lomonosov, Academician of the Russian Academy of Natural Sciences Alla Alexandrovna Kornilova, and Anatoly I. Klimov, a member of the Joint Institute for High Temperatures (JIHT RAS), academician of the Russian Academy of Natural Sciences, doctor of physical and mathematical sciences.

Member of the Institute of Physical Research and Technology of the Russian University of Peoples’ Friendship (PFUR), head of the All-Russian Cold Nuclear Fusion and Ball Lightning Seminar since 1993, corresponding member of the Russian Academy of Natural Sciences Nikolai Vladimirovich Samsonenko and corresponding member of the Russian Academy of Natural Sciences Alexander G. Parkhomov were elected deputy chairmen of the board.

The work of board leaders has long been known in the international community of cold fusion researchers. In a flawless experiment, Alla Kornilova proved the possibility of implementing nuclear fusion reactions in microbiological cultures (biological transmutation), and her technology for accelerated deactivation of liquid radioactive waste using a radiation-resistant microbial association, developed in the late 1990s, passed successful state expertise in South Korea, the results of which were published on February 28, 2019 (see Kyou-Jin Yum, Jong Man Lee, Gun Woong Bahng and Shanghi Rhee with An Experiment of Radioactivity of Radionuclide (137Cs) with Multi-component Microorgani sms of 10 Strains).

In terms of its official recognition, the South Korean expertise is a landmark event for the entire scientific field of research on cold fusion, recognition which has already occurred at least in the USA, Canada, Japan, South Korea, India and China. We hope that this will finally happen in Russia.

Today, there are all the conditions for the technology of accelerated microbiological deactivation of liquid radioactive waste and contaminated land to become part of world practice before the cold fusion power reactors are widely used.

Vladimir Grachev, Editor-in-Chief of the Academy of Natural Sciences of Radio Electronics, Nanosystems, and Information Technologies (RENSIT), demonstrates the thematic issue of the journal (# 1, 2017) on cold nuclear fusion

The vortex plasma power reactor of Anatoly Klimov in its parameters is included in the group of world leaders among numerous power plants that use cold nuclear fusion energy. The work of Alexander Parkhomov on “deciphering” the e-cat reactor Andrea Rossi of ​​Russia has become widely known in the world due to its complete openness. Today, the Parkhomov reactor in all respects “comes on the heels” of its secret Italian prototype.

* * *

A few hours after the Russian conference opened, the two-day memorial colloquium at the Massachusetts Institute of Technology (2019 LANR / CF Colloquium at MIT), dedicated to the 30th anniversary of the sensational press conference at the University of Utah, Martin Fleischmann and Stanley Pons, at which they reported that they managed to get a nuclear fusion reaction during the electrolysis of water.

The participants of the Russian conference sent a greeting to the American colloquium:

“Dear colleagues, please accept our warmest regards to the International Colloquium on the 30th anniversary of cold fusion.

We were 30–40 years old when we all united around the idea of ​​cold fusion. For many years, we have conducted research, exchanged knowledge, built models and theories, and everyone has matured a bit during this time. Today, as leaders of this science, we want the thirst for knowledge not to leave us, and for us to manage to pass on our vast experience to the younger generation.

The Russian community of cold fusion researchers wishes all their friends and associates from different countries to see the fruits of the realization of our ideas and results, and have time to enjoy this in the coming years.

Successful work of the International Colloquium and see you soon at the 23rd International Conference in Italy.

Alexey Nikolaev

Alla Kornilova

Vladimir Vysotsky

Irina Savvatimova

Sergey Tsvetkov

Alexander Parkhomov

Anatoly Klimov

Vladimir Balakirev

Valery Krymsky

Nikolay Samsonenko

Vladimir Grachev

Albina Gerasimova

Natalia Famina

March 23, 2019, Moscow. ”

The MIT colloquium also did not go without pleasant surprises. It became known yesterday that the American Classifier of Patents and Trademarks (CPC – Cooperative Patent Classification) in section G21 “Nuclear Fusion Reactors” has introduced a new class of reactors 3/00 “Low-temperature nuclear fusion reactors, including the so-called cold fusion reactors.”

New section in the classification of US patents for low-temperature nuclear fusion rectors (highlighted in red)

March 23, 1989 – the day of the press conference of Martin Fleischmann and Stanley Pons – today is considered to be the date of birth of the direction of cold fusion research. However, we know that Martin Fleischman and Stanley Pons were not sole pioneers of the cold fusion phenomenon, and even the term cold fusion was coined by journalists much earlier, in 1956, in connection with the research of Nobel laureate Luis Alvarez on muon catalysis, one of the “scientifically recognized” options obtain cold nuclear fusion.

Pioneering experimental and theoretical work on cold nuclear fusion within the framework of emerging nuclear physics and quantum mechanics was carried out in the late 1920s and early 1930s. Some results of these forgotten studies for many years have been reproduced at the present experimental level only at the turn of the XX and XXI centuries.

After the end of World War II, the classics of Soviet nuclear physics — Igor Kurchatov, Yakov Zeldovich, Andrei Sakharov, Yevgeny Zababakhin — also wrote about the possibility of implementing cold nuclear fusion.

Why exactly did the poorly reproducible, modest in its results, and frankly “raw” work of Martin Fleischmann and Stanley Pons cause unprecedented interest in the whole world to begin research in cold nuclear fusion? What exactly gave impetus to thousands of highly professional and frankly amateurish research?

The answer to this question will become clear after becoming acquainted with the reports of one of the leading theorists of cold synthesis, Professor of Kiev University T. G. Shevchenko, Academician of the Russian Academy of Natural Sciences Vladimir Ivanovich Vysotsky, member of the NPO Luch, Corresponding Member of the Russian Academy of Natural Sciences Irina Borisovna Savvatimova and Corresponding Member of the Russian Academy of Natural Sciences Sergey Alekseyevich Tsvetkov.

Works on cold fusion by I. B. Savvatimova and S. A. Tsvetkov began, like many other Soviet researchers, literally several days after the press conference of Drs. Fleishman and Pons, and V. I. Vysotsky published his first article on cold fusion back in 1981.

Already in May 1989, the first applications for copyright certificates on cold fusion were filed in the USSR. The work carried out at the highest methodological level by leading specialists of the institutes and nuclear centers of Sredmash and the USSR Academy of Sciences, allowed not only to successfully reproduce the results of Fleischmann and Pons, but also to obtain nuclear fusion reactions using other methods (including shock waves, saturation from the gas phase, cavitation, electrolysis in molten salts, etc.).

At the end of 1990, the Interdepartmental Council for Chemistry and Chemical Technology of the State Committee on Science and Technology of the USSR held a closed competition on the issue “Cold synthesis stimulated mainly by electrochemical means”. According to the results of this competition, and under the guidance of the Director of the Institute of Electrochemistry of the Ural Branch of the Academy of Sciences of the USSR, Academician Alexei Nikolaevich Baraboshkin, the project of the All-Union Cold Nuclear Fusion research program was developed.

Academician Alexei Nikolaevich Baraboshkin (1925–1995), author of the unrealized All-Union research program “Cold Nuclear Fusion” of 1990

The program was not funded due to the collapse of the USSR. Despite this, by the mid-1990s, participants in the program practically solved all the tasks formulated in the draft program, the main ones of which were clarifying the conditions for the reproducibility of cold fusion reactions and determining the most promising directions for its use.

After the death of academician A.N., since 1998, Baraboshkina began the shameful scientific period of the existence of cold fusion, shameful for the Russian Academy of Sciences, which continues in Russia today. How did they almost completely forget the Soviet achievements in the study of cold fusion – one of the many “mysteries” of post-Soviet Russia?

In any case, today we are grateful to Martin Fleischmann and Stanley Pons for their civic courage, for their press conference that violated the canons of scientific communications, but played the role of a trigger to study the numerous “anomalous” manifestations of cold fusion accumulated by that time in nuclear physics, materials science, plasma physics, catalysis, biophysics, geology and other scientific disciplines.

All reports of the participants of the conference “Cold Synthesis – 30 years” will be published on the site of IA REGNUM and on the site of the Russian Academy of Natural Sciences.
by Andrey Sverchkov

Conference of the Russian Academy of Natural Sciences “Cold fusion – 30 years” is a re-post of a slightly reformatted google-translate of the article first published on here. Any use of materials is allowed only if there is a hyperlink to REGNUM news agency.

Juxtapositional ending: Here is a photo taken from the 1st Russian Cold Fusion Conference. Can you name these pioneers of science?–Ruby Carat