A New Kind of Nuclear Reactor?

A New Kind of Nuclear Reactor? by Guest Author Dr. Ludwik Kowalski, Montclair State University, in which Dr. Kowalski dives into the Parhomov experiment and makes sense of the particulars for the general reader.

Read the original article posted here on Dr. Kowalski’s cold fusion archive.


Abstract

Consider a short sealed porcelain tube, containing about one gram of white powdered LiAlH4 fuel mixed with ten grams of powdered nickel. Professor Alexander G. Parkhomov, who designed and tested it, calls this small device a nuclear reactor, in a published report. The purpose of this short article is to briefly summarize Parkhomov’s discovery, in as simple a way as possible, and to make some general comments. Such setup, even if scaled up, would not be useful in an industrial electric power generating plant, due to well-known conversion efficiency limit. The expected readers are scientists and educated laymen.

Section 1 Introduction

Consider a sealed porcelain tube 20 cm long, containing about one gram of white powdered fuel mixed with ten grams of powered nickel. Professor Alexander G. Parkhomov, who designed and tested it, calls this small device a nuclear reactor, in a published report (1). The purpose of this short article is to briefly summarize Parkhomov’s discovery, in as simple a way as possible, and to make some general comments. The expected readers are scientists and educated laymen. Hopefully, this article will prepare them to understand Parkhomov’s report, and similar technical publications on the same topic.

The author, a retired nuclear physicist educated in the USSR, Poland, France and the USA, has dedicated this article to his father who died in a Gulag camp, and to his famous mentor Frederic Joliot-Curie. Who is Alexander Parkhomov? He is a Russian scientist and engineer, the author of over one hundred publications. The photo shown below was taken in 1990. Electronic equipment on the table is probably not very different from what he used to measure thermal energy released in the reactor.

Parkhomov in his lab

Section 2 Describing the Reactor

The title of Parkhomov’s recent report is “A Study of an Analog of Rossi’s High Temperature Generator.” Is the word “reactor,” in the title of this section, appropriate? Yes, it is. A totally unexplained reaction, releasing an extraordinary amount of heat, must be responsible for what is described in Sections 3. Is this reaction nuclear? Parkhomov certainly thinks so; otherwise he would not use instruments designed to detect nuclear radiations. His powdered fuel was 90% natural Ni; the rest was a LiAlH4 compound.

The controversial field of science and technology (2,3), in which Rossi (4) and Parkhomov are active, is Cold Fusion CF), also known under different names, such as CMNS, LENR, etc. Reference to Andrea Rossi in the title of the report is puzzling. Yes, Rossi also thought that thermal energy released in his device was nuclear, rather than chemical. But that is where the similarities end; the two reactors differ in many ways. For example, Rossi’s fuel was hydrogen gas, delivered from an outside bottle.

The illustration below is a simplified diagram of Parkhomov’s setup. The diagram does not show that the porcelain tube (red in the diagram) was closely wrapped by a heating wire. The electric energy delivered to the heater, in each experiment, was measured using several instruments; one of them was a standard kWh meter, similar to those used by electric companies. Heating of the fuel was necessary to keep the fuel temperature very high; the required temperature had to be between 1000 C and 1400 C.

Simplified diagram of Parkhomov’s setup

The reactor container (a covered box) was immersed in an aquarium-like vessel, filled with boiling and steaming water. To keep the water level constant during the experiment, a small amount of hot water (probably 90 grams) was added through a funnel, every three minutes or so. The mass of the escaped steam, turned into liquid water, was measured outside of the setup. Knowing the mass of the steam that escaped during an experiment one can calculate the amount of thermal energy escaping from the aquarium. Parkhomov’s method of measuring excess heat was not very different from that used by the leader of Russian Cold Fusion researchers, Yuri Nikolaevich Bazhutov (5).

Section 3 A Surprising Energy Result

Here is a description of results from one of three experiments performed by Parkhomov in December 2014. The porcelain tube with the powdered fuel was electrically heated at the rate of 500W. Then the state of thermal equilibrium was reached. The water in the aquarium remained in that state for nearly one hour. The constant fuel temperature, measured with a thermocouple (also not shown in the diagram) was 1290 C. The time interval of 40 minutes was selected for analysis of experimental results. The amount of water evaporated during that interval was 1.2 kg. The amount of electric energy the heater delivered to water in the aquarium, during that time, was 1195 kJ. Most of that energy was used to evaporate water. But 372 kJ of heat escaped from water via conduction. That number was determined on the basis of results from preliminary control experiments
Let XH be the amount of heat the aquarium water received from the reactor that is from the porcelain tube containing the fuel.
Thus the net “input” energy was

INPUT = 1195 – 372 + XH = 823 + XH

It represents thermal energy received by water, during the experiment.
Knowing the water’s “heat of evaporation” (2260 kJ/kg), one can calculate the thermal energy lost by water to sustain evaporation. It was:

OUTPUT = 2260*1.2 = 2712 kJ

This is the thermal energy lost by water, during the experiment. According to the law of conservation of energy, the INPUT and the OUTPUT must be equal. This leads to:

XH = 2712 – 823 = 1889 kJ

This is a surprising result. Why surprising? Because it is much larger than what is released when one gram of a familiar fuel is used. Burning one gram of powdered coal, for example, releases about 30 kJ of thermal energy, not 1889 kJ. What is the significance of this? The superficial answer is that “Parkhomov’s fuel is highly unusual, and potentially useful.”

Section 4 Cold Fusion Contoversy

Parkhomov’s box is not the first device that was introduced as a multiplier in which electric energy is turned into heat, and where outputted thermal energy exceeds the electric energy supplied. A conceptually similar device, based on electrolysis, was introduced in 1989, by Fleischmann and Pons (F&P). Their small electrolytic cell also generated more thermal energy than the electric energy supplied to it. Trying to establish priority, under pressure from University of Utah administration, the scientists announced their results at a sensational press conference (March 23, 1989). They wanted to study the CF phenomenon for another year or so but were forced to prematurely announce the discovery (private information)

The unfortunate term “cold fusion” was imposed on them. Why unfortunate? Because it created the unjustified impression that cold fusion is similar to the well known hot fusion, except that it takes place at much lower temperatures. This conflicted with what had already been known–the probability of nuclear fusion of two heavy hydrogen ions is negligible, except at stellar temperatures (6,7).

Suppose the discovery had not been named cold fusion; suppose it had been named “anomalous electrolysis.” Such a report would not have led to a sensational press conference; it would have been made in the form of an ordinary peer review publication. Only electrochemists would have been aware of the claim; they would have tried to either confirm or refute it. The issue of “how to explain the heat” would have been addressed later, if the reported phenomenon were recognized as reproducible-on-demand. But that is not what happened. Instead of focusing on experimental data (in the area in which F&P were recognized authorities) most critics focused on the disagreements with the suggested theory. Interpretational mistakes were quickly recognized and this contributed to the skepticism toward the experimental data.

5) Engineering Considerations

The prototype of an industrial nuclear reactor was built in 1942 by Enrico Fermi. It had to be improved and developed in order to “teach us” how to design much larger useful devices. The same would be expected to happen to the tiny Parkhomov’s device.
a) One task would be to develop reactors able to operate reliably for at least 40 months, instead of only 40 minutes. This would call for developing new heat-resisting materials. Another task would be to replace the presently used (LiAlH4 + Ni) powder by a fuel in which energy multiplication would take place at temperatures significantly lower than today’s minimum, which is close to 1000 C .

b) The third task would be to scale up the setup, for example, by placing one hundred tubes, instead of only one, into a larger aquarium-like container. This would indeed increase the amount of released thermal energy by two orders of magnitude. Scaling up, however, would not increase the multiplication factor. The only conceivable way to increase the MF would be to find a more effective fuel.

c) A typical nuclear power plant is a setup in which a nuclear energy multiplier (a uranium-based reactor) feeds thermal energy into a traditional heat-into-electricity convertor. Such multipliers are workhorses of modern industry. Note that MF of an industrial nuclear reactor must be larger than three; otherwise it would not be economically justifiable. This is a well-known fact, related to the limited efficiency of heat engines.

d) Uranium and thorium seem to be the only suitable fuels, in any kind of energy multiplier. Why is it so? Because fission is the only known process in which more than 100 MeV of nuclear energy is released, per event. This number is about four times higher than what is released when two deuterons fuse, producing helium. Will more efficient fuels be found? If not then chances for replacing coal, oil, and gas by a Parkhomov-like fuels are minimal.

6) Scientific Considerations

Science is at the base of all modern engineering applications. But the main preoccupation of most scientists is to understand laws of nature, not to build practically useful gadgets. Confirmation of claims made by Parkhomov is likely to trigger an avalanche of scientific investigations, both theoretical and experimental, even if the energy multiplication factor remains low.

a) Suppose that Parkhomov’s energy multiplier, described in this article, is already recognized as reproducible on demand, at relatively low cost. Suppose that the “what’s next?” question is asked again, after two or three years of organized investigations. Scientists would want to successfully identify a “mystery process” taking place in the white powder, inside the porcelain tube. Is it chemical, magnetic, pyrometallurgic, biological, nuclear, or something else? Answering such questions, they would say, is our primary obligation, both to us and to society.

b) Parkhomov certainly believes that a nuclear process is responsible for XH, in his multiplier. Otherwise he would not use instruments designed to monitor neutrons and gamma rays. But, unlike Fleischmann and Pons, he does not speculate on what nuclear reaction it might be. He is certainly aware of tragic consequences of premature speculations of that kind.

7) Social Considerations

The social aspect of Cold Fusion was also debated on an Internet forum for CMNR researchers. Referring to the ongoing CF controversy, X1 wrote: “The long-lasting CF episode is a social situation in which the self-correcting process of scientific development did not work in the expected way. To what extent was this due to extreme difficulties in making progress in the new area, rather than to negative effects of competition, greed, jealousy, and other ‘human nature’ factors? “A future historian of science may well ask “how is it that the controversy ignited in 1989 remained unresolved for so many decades? –who was mainly responsible for this scientific tragedy of the century, scientists or political leaders of scientific establishment, and govrnment agenies, such as NSF and DOE? Discrimination against CF was not based on highly reproducible eperimental data; it was based on the fact that no acceptbal theory was found to explain unextected experimental facts, reported by CF researchers.

Parkhomov’s experimental results will most likely be examined in many laboratories. Are they reproducible? A clear yes-or-no answer to this question is urgently needed, for the benefit of all. What would be the most effective way to speed up the process of getting the answer, after a very detailed description of the reactor (and measurements performed) is released by Parkhomov? The first step, ideally, would be to encourage qualified scientists to examine that description, and to ask questions. The next step would be to agree on the protocol (step-by-step instructions) for potential replicators. Agencies whose responsibility is to use tax money wisely, such as DOE in the USA, and CERN in Europe, should organize and support replications. Replicators would make their results available to all who are interested, via existing channels of communication, such as journals, conferences, etc. A well-organized approach would probably yield the answer in five years, or sooner.

References

(1) A.K. Parkhomov, “A Study of an Analog of Rossi’s High Temperature Generator” http://csam.montclair.edu~kowalski/cf/parkh1.pdf

(2) L. Kowalski, “Social and Philosophical Aspects of a Scientific Controversy;” IVe Congres de la Societe de Philosophy des Sciences (SPS); 1-3 Juin 2012, Montreal (Canada). Available online at:
http://www.ptep-online.com/index_files/2012/PP-29-L2.PDF

(3) Ludwik Kowalski, http://pages.csam.montclair.edu/~kowalski/cf/413montreal.html

(4) Ludwik Kowalski, ” Andrea Rossi’s Unbelievable Claims.” a blog entry: http://pages.csam.montclair.edu/~kowalski/cf/403memoir.html#chapt24

(5) Peter Gluck interviews Bazhutov:
https://coldfusionnow.org/interview-with-yuri-bazhutov-by-peter-gluck/

(6) John R. Huizenga, “Cold Fusion, The Scientific Fiasco of the Century.”
Oxford University Press, 1993, 2nd ed. (available at amazon.com)

(7) Edmund Storms, “The Explanation of Low Energy Nuclear Reaction,” Infinite Energy Press, 2014. (also available at amazon.com)

Find more on Ludwik Kowalski’s cold fusion archive.

Related Links

Russian scientist replicates Hot Cat test: “produces more energy than it consumes”

Q&A with Jack Cole on new Hot Cat replication, experiment completion

A Russian Experiment: High Temperature, Nickel, Natural Hydrogen by Michael C.H. McKubre

New book describes how E-Cats are made

A collection of articles by Robert Ventola has been published as a book “HOT-CAT 2.0: How last generation E-Cats are made” co-authored with Vessela Nikolova.

Vessela Nikolova is the author of the biography of Andrea Rossi E-Cat The New Fire. According to her blog, Robert Ventola is a contributor and electrical engineer.

The book is dedicated to the memory of Sergio Focardi physicist and Professor Emeritus at the University of Bologna, who worked with Andrea Rossi first testing, and then collaborating in the development of the E-Cat.

The chapters describe the evolution of E-Cat designs and includes a chapter entitled The secret interior of a reactor

Read excerpts from the Preface by Vessela Nikolova and the Introduction by Robert Ventola compliments the authors.

Purchase the book on Amazon.

Open Power Association replicating Parkhomov E-Cat

Fig-1 Heating resistance of ceramics
Fig-1 Heating resistance of ceramics
The Open Power Association at Hydrobetatron.org has published Report No. 11 describing the set-up for an upcoming replication of the Parkhomov-style E-Cat.

Results of the experiments will be reported at the upcoming 19th International Conference on Cold Fusion this April 2015.

What follows is a slightly-modified google-translated English translation of the report. Open Power’s Ugo Abundo provided these pictures of the construction of the cell. See more detailed photos and read the original report in Italian here.


Report No. 11: Design of re-runs and enhancements of A. Parkhomov reactor (inspired by the E-cat) at Open Power Lab

Fig-6 Steel pipe containment
Fig-6 Steel pipe containment
The experimental campaign ITAbetatron will also include the replication of the process that is believed to take place in the E-cat and the study of its variants, with the aim of enhancing its performances such as controllability, efficiency, etc. by the adoption of specific criteria that inform such our experimentation.

Based on the recent experiments of the Russian scientist Alexander Parkhomov, of independent reports on E-cat, and the experiments began by the Martin Fleischmann Memorial Project, we must put the emphasis on the serious safety problems, both in the preparation of reagents and in the execution of experiments.

In this regard, we will provide the details of the equipments that have been chosen to carry out the campaign, just launched, the results of which will be presented and discussed at the conference ICCF19 on April 2015.

The experimental set-up is divided into 4 sections, modularly composable:

1) gas supply, with refillable cylinders of hydrogen adsorbed on metal powders, and cylinders of Argon, with adjustment of individual pressures and the possibility of mixing;

Fig-24 Glove box operating
Fig-24 Glove box operating
2) room glove-box manipulation in an inert atmosphere, for the loading of reactive species in the capsules steel interchangeable;

3) the reaction chamber for housing the reactors, by containing them in an inert atmosphere in a pressurizable container and very resistant mechanically;

4) the discharge section, with safety valve, expansion tank and filtered collection of the powders in case of explosion, chemical abatement of hydrogen.

Composing subsystems 1), 2) and 4), we get the gaming system in preparation safety of reagents, composing subsystems 1), 3) and 4) is obtained in the reaction system security.

Fig-13 Detail tube thermocouple
Fig-13 Detail tube thermocouple
The reactor consists of a ceramic tube which houses an externally wrapped around resistance Nichrome, having access internally to a tube removable and interchangeable housing-sealable stainless steel samples at the ends by means of threaded screws sealed with stops in thread-adhesive ceramic by high temperatures, for containment of reagents.

This tube is wrapped in tape, ceramic fiber for high temperature, and has a ceramic tube in direct contact with the ceramic tube interior, for the accommodation of the thermocouples.

The whole is inserted in a copper coil for the cooling water or air, further insulated and contained in a stainless steel tube exterior.

The apparatus constituting the group-reactor heater-chiller, is contained in the chamber 3), powered by the subsystem 1) and connected to the subsystem 4).

A variac guide sending the current, once the rectified by a bridge, to the heater, and a watt meter records the power fed after filtering with a low-pass filter and an isolation transformer.

Fig-14 Complete line test reactor
Fig-14 Complete line test reactor
The measurements of the thermocouples are recorded by the computer interface.

The difficulty to operate at the high temperatures involved has made necessary tests of thermal resistance tests of the apparatus, as well as the dangerousness of the reagents has required the adoption of manipulation in an inert atmosphere, with recovery of any dust in totally enclosed system.

Ugo Abundo
Open Power

See more photos and read the original report in Italian here.

Russian scientist replicates Hot Cat test: “produces more energy than it consumes”

E-Cat World has obtained an English translation of the report by Professor Alexander Parkhomov originally published in Russian detailing his replication of Andrea Rossi’s E-Cat generator.

Download the report here:
http://www.e-catworld.com/wp-content/uploads/2014/12/Lugano-Confirmed.pdf

Alexander Parkhomov has confirmed the Hot Cat experiment.
Photo: Alexander Parkhomov courtesy F. David.
Parkhomov, a disciple and colleague of Nobel prize winner Andrei Sakharov, attempted to replicate the Hot Cat experimental set-up reported in the recent paper Observation of abundant heat production from a reactor device and of isotopic changes in the fuel [.pdf] authored by a group of Italian and Swedish scientists testing Rossi’s technology.

Parkhomov writes that “the reactor is capable of generating a lot of heat in excess of electric heating”. With the E-Cat replica testing at temperatures between 1200C-1300C, the unit provided a COP of about 2.6.

However, Fig.6 of the report shows a so-called heat-after-death effect, whereby after the heating input is turned off, the reactor continues to maintain its temperature for approx. 8 minutes before dropping lower. This unique effect, when utilized fully, will allow infinite COP as there is zero input power while output power stays strong.

Fig.5 shows that no radiation beyond the normal background radiation was detected.

The English-version of Parkhomov’s report is reproduced below:

BEGIN REPORT ***************************************************************

1. The design of the reactor.

For the manufacture of reactor Al2O3 ceramics tube length of 120 mm, an outer diameter of 10 mm and an inner diameter of 5 mm is used. The tube is rounded by electric heater. Inside the tube it is 1 g Powder Ni + 10% Li [Al H4]. The thermocouple contacts to outer surface of the tube. The ends of the tube are sealed heat-resistant cement. Likewise the entire surface of the reactor is coated by heat-resistant cement.

Fig. 1 Design of the reactor.
Fig. 1 Design of the reactor.
Fig. 2 Reactor prepared for experiment.
Fig. 2 Reactor prepared for experiment.

 

 

 

 

 

 

 

 

 

Used by experts at verification Rossi reactor technique based on thermovision camera observation is too complex. In this experiment a methodology based on the amount of water boiled out is used. This technique is repeatedly checked. In this experiment the reactor is inside of closed metal vessel. This vessel immersed in the water. When the water boils, part of it is removed as a vapor. By measuring the decrease of water, it is easy to calculate the separated heat because the value of the evaporations heat is well-known. Correction for heat loss through the insulation can be calculated as cooling rate after shutdown reactor.

Fig. 3. Design of the calorimeter
Fig. 3. Design of the calorimeter
 Fig. 4. The reactor in operating time. The covers from a thermal insulation and vessel with the reactor are removed

Fig. 4. The reactor in operating time. The covers from a thermal insulation and vessel with the reactor are removed

 

 

 

 

 

 

 

 

 

 

2. Outcomes of the experiment

Fig. 5. Temperature changes in the heating process
Fig. 5. Temperature changes in the heating process

The power supplied to the heater stepwise varied from 25 to 500 watts. Level of 1000°C was overcome after 5 hours of heating. On the same diagram shows the count rate Geiger counter SI-8B. This counter responsive to alpha, beta, gamma and X-rays. It is seen that all during heating, the radiation situation is not very different from the background. A slight increase in temperature is noticeable only about 600°C to 1000°C. Further studies have shown that this chance or regularity. Dosimeter DK-02 is not found during the experiment set dose within the measurement error (5 mP)

Fig. 6. Temperature changes in the heating process. Area of high temperatures
Fig. 6. Temperature changes in the heating process. Area of high temperatures

Here is shown in more detail the temperature change of the heating power 300, 400 and 500 watts. It can be noted that for the same heat output there is a gradual increase in temperature, particularly strong in the last site. At the end of the site with the highest temperature there are the temperature oscillations. This section ends with the termination of electric heating as a result of heater burnout. Thereafter, at the temperature for 8 minutes kept at nearly 1,200°C, and then begins to fall sharply. It is indicates that in the reactor at this time heat is produced at kilowatt without any electric heating. Thus, from the already seen that the reactor is capable of generating a lot of heat in excess of electric heating.

Table. Determination of the extracted heat and coefficient of thermal. Calculations are made for three modes of operation with a temperature of about 1000 °C, about 1150 °C and 1200 – 1300 °C.
Table. Determination of the extracted heat and coefficient of thermal. Calculations are made for three modes of operation with a temperature of about 1000°C, about 1150°C and 1200 – 1300°C.

At temperatures 1150°С and 1200°C – 1300°C, the heat release of the reactor considerably exceeds consumed energy. During activity in these modes (90 minutes) over the consumed electrical energy about 3 МДж or 830 Wh is produced. Output Experiments with analogue of high-temperature Rossi heat source, loaded with a mixture of nickel and lithium aluminum hydride, showed that at temperatures of about 1100°C or higher this device produce more energy than it consumes.

END REPORT*****************************************

Related Links

Interview with Andrea Rossi on the new Hot Cat test report with John Maguire

The Ultimate Hot Tub

A.G.Parkhomov on ResearchGate.com

Andrea Rossi 2nd US Patent Application Published 6 Nov 2014 at USPTO

IMG_9493_portrait1The United States Patent Office has published a further patent application by Andrea Rossi on November 6, 2014.

This application was filed in the US on April 26, 2014 claiming priority from three earlier US applications made on May 2, May 3 and May 10, 2013. No changes can be made to the disclosure as from April 26, 2014. It will still take another year for the US Examiner Tu Ba Hong to search the invention and issue a first Office Action.

This filing was paralleled by a separate application made under the Patent Cooperation Treaty – PCT on April 26, 2014. The PCT filing claims the benefit of the same three US priority filings and probably has the same text as the US application made on the same date. Like the US application no changes can be made to the PCT disclosure as from April 26, 2014.

In both cases the original applicant was Industrial Heat, Inc. of 111 E Hargett St, Ste 300, Raleigh, North Carolina. This name was corrected before the USPTO on October 6, 2014 to IPH International BV of the same address and an assignment of the application to Leonardo Corporation was entered on the same date. The US application as published on November 6th shows Leonardo Corporation of 1331 Lincoln Road, Suite 601, Miami Beach, Florida as the applicant.

While the US filing will not be searched for a year the PCT application as published was accompanied by an International Search Report – ISR. No relevant references were found by the PCT Searcher. Three references were cited as being of interest but not damaging to the application: the 2011 US published application corresponding to Rossi’s first PCT filing, the Fleischmann & Pons PCT application of 1990 as filed by the University of Utah and a Russian reference RU 2267694 by Chabak Aleksandr Fedorovich published January 10, 2006. The PCT search was carried out in Moscow by the International Search branch of the Russian Patent Office. The only class searched was a single international class F24J 1/00. By way of contrast the corresponding US application was tagged for searching in a number of classes, including the International Class for Cold Fusion technology.

Before addressing the content of the disclosure in this new, published, 2nd Rossi US application, some further observations will be made about the “tombstone” data associated with this filing. The American firm acting on behalf of the original applicant, Industrial Heat, Inc., is NK Patent Law of 1917 Water’s Edge Drive, Raleigh, North Carolina. This firm has 5 patent professionals, 4 of whom are attorneys and one patent agent. They also have offices in Durham, North Carolina. At the same time, Rossi is pursuing his 1st application in the US using the New York firm of Hedman & Costigan PC. One possible reason for separate firms being involved is that the applicant, Industrial Heat, Inc. in the 2nd filing may have chosen the firm to have carriage of the 2nd application.

The fact that the 2nd application has been transferred from the name of Industrial Heat, Inc., (changed to IPH International BV), to Leonardo Corporation as recently as October, 2014 suggests that the original applicant may have withdrawn from being associated with the application. Leonardo Corporation was originally formed by Andrea Rossi. Presently, there is no reason for Rossi to change the patent firm designated for that 2nd application as no substantial expenses are imminent. It may be that they will agree to continue acting on a pro bono or on a deferred remuneration basis. Certainly it would be cost efficient for Rossi to consolidate the 2 applications in a single firm. It will be interesting to see which one he chooses.

The fact that the search was carried out at the Russian Patent Office is not especially relevant. They can do competent searches. But the limitation of that search to a single class is of more concern. To be fair, searches are supposed to be directed to the subject matter of the claimed invention. This invention has a number of claims that are likely to be amended in the course of examination. It would be highly desirable for the scope of search in respect of this application to be broadened. There is a prospect that this may occur when the US Examiner reaches the US application. But if the US Examiner chooses to reject the application as being based upon the unproven phenomenon of Cold Fusion, he may skimp on the search. That kind of rejection is often an easy way out for US Examiners who are on a tight schedule. There may be a template for rejecting Cold Fusion applications circulating amongst the Examiners at the USPTO.

Now we can turn to the substance of the disclosure in the pending US application.

It is important to appreciate that, with the amendments to the US patent law of 2013, it is now true around the world that no-one can obtain a valid patent for an arrangement that has been “made available to the public” prior to the filing date of an application. Something is “available to the public” if disclosed in any way or if it is “obvious” based upon everything that is known. If you delay filing for a patent then you are playing Roulette with the system.

If it is too late to obtain a patent for a key feature of an arrangement under these rules then no-one can obtain a patent on that specific feature. Keeping a concept secret at that point is likely to only provide a limited period of protection from competition. Secrets will out, eventually.

The fundamental principle of the free market is that everyone is free to copy whatever is not specifically protected under Intellectual Property laws.

Even if Andrea Rossi has discovered an effect for which he deserves a Nobel Prize, he will not be entitled to obtain a patent unless the patent documents as filed have been properly prepared. This means that the invention has to work (also a requirement for a Nobel Prize), and that the disclosure accompanying the application as filed must be sufficient to allow persons skilled in the field to achieve the benefits of the invention. The disclosure must be “enabling”. Then as the applicant he must develop language for one or more patent claims that specify arrangements that contain a feature which is both new and unobvious.

Referring now to the present application, while the claims look ridiculous as a first impression, at the time of filing claims can be merely placeholders. Claim 1 as filed reads:

“1. A reactor device comprising: a sealed vessel defining an interior; a fuel material within the interior of the vessel; and a heating element proximal the vessel, wherein the fuel material comprises a solid including nickel and hydrogen, and further wherein the interior of the sealed vessel is not preloaded with a pressurized gas when in an initial state before activation of the heating element.”

Is this new? Is it unobvious? Does it describe something that works? Dynamite in a can along with nickel and water vapour meets this definition when thrown in a fire. Water contains hydrogen, doesn’t it? A claim should include enough context to focus it on a structure that works, is new and is unobvious.

Deficiencies in the claims at the time of filing are not fatal. The issue is whether there is “meat” in the disclosure sufficient to support claims that are valid and have real value. Claims can be presented at a later date so long as they are “supported”, ie, address structures sufficiently outlined in the disclosure at the time of filing. What, therefore, is disclosed in this patent application?

Here is a sample of what is asserted in the disclosure:

“[0046] Experimental investigations of heat production in layered tubular reactor devices according to several embodiments have been conducted. In each example, the reactor device was charged with a small amount of hydrogen loaded nickel powder. An exothermic reaction was initiated by heat from resistor coils inside the reactor device. Measurement of the produced heat was performed with high-resolution thermal-imaging cameras, recording data every second from the hot reactor device. Electrical power input was measured with a large bandwidth three-phase power analyzer. While all three experiments yielded interesting results, the reactor device 100 was damaged during the first of the three experiments. The latter two experiments were conducted without equipment failure, and data was collected in the latter two experimental runs for durations lasting 96 and 116 hours, respectively. Heat production was indicated in both experiments. The 116-hour experiment also included a calibration of the experimental set-up without an active charge present in a dummy tubular reactor device. In the case of the dummy reactor device, no extra heat was generated beyond the expected heat from the electrical input.”

What is the structure that makes this work?

[0048] …… In a reactor device disclosed herein, an exothermic reaction is fueled by a mixture of nickel, hydrogen, and a catalyst. In the embodiments detailed in these descriptions, thermal energy is produced after the reaction within an inner-most tube of a layered tubular reactor device is activated by heat produced by a set of resistor coils located outside the inner-most tube but inside the layered tubular reactor device.

[0170] Each reactor device, according to these descriptions, includes a reaction chamber in which nickel powder and hydrogen react in the presence of a catalyst……

I don’t want to go any further. These are the only two references to a “catalyst” appearing in the application. No reference is made to a “catalyst” by name in the claims. How can this be an enabling disclosure?

For clarification as to patenting requirements in the United States here is an excerpt from the US Patent Act:

35 U.S. Code § 112 – Specification

(a) In General.— The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same, and shall set forth the best mode contemplated by the inventor or joint inventor of carrying out the invention.

How can the best mode requirement be met when a catalyst is required and that catalyst is not disclosed? How could this application even have been filed?

Others can search through this disclosure for ostensibly useful technical information, but as a patent filing this application will encounter great difficulties.

The Ultimate Hot Tub

2014-report-coverI have never been an optimist or a pessimist. I’m an apocalyptic only. Our only hope is apocalypse. Apocalypse is not gloom. Its salvation.” –Marshall McLuhan

Apocalypse – Old English, via Old French and ecclesiastical Latin from Greek apokalupsis, from apokaluptein ‘uncover, reveal,’ from apo- ‘un-’ + kaluptein ‘to cover.’ –Google

A report released Wednesday on a test of the E-Cat Energy Catalyzer concludes a large amount of heat was generated using a fuel of one gram of nickel powder, with no radiation detected at all.

The authors describe details of the equipment, the experimental set-up, and how heat measurements were taken, along with an analysis of the outer shell material and fuel, in the paper Observation of abundant heat production from a reactor device and of isotopic changes in the fuel [.pdf]


Listen to Andrea Rossi discuss the results with John Maguire here.


The paper was authored by scientists who had performed tests on an earlier version of the E-Cat, releasing the report Indication of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder [.pdf] last year. During one November, 2012 experiment, the E-Cat generated so much thermal power, it melted the steel inner core body and the ceramic casing. This second test purposefully kept the input power moderate to ensure a longer life for the newly designed E-Cat.

As in the previous test, David Bianchini monitored radiation from the unit “before, during, and after operation”. No radiation was reported from the E-Cat, or from the fuel charge.

Over the last year, E-Cat intellectual property and licensing rights were acquired by private company Industrial Heat, LLC, an affiliate of Cherokee Investment Partners, with investment in the project reported at over $10 million. The group has retained inventor, designer, and Chief Engineer of the E-Cat, Andrea Rossi to lead the development of the energy generator.

Andrea Rossi participated in the experiment by fueling, starting the E-Cat, stopping the E-Cat, and removing the fuel from inner chamber. At these times, members of the evaluation team were present, and observing the activity.

Observation of abundant heat production from a reactor device and of isotopic changes in the fuel [.pdf]

The report was organized into sections with the lead authors writing the Abstract and main body of the report. Five other authors contributed four appendixes describing radiation monitoring and fuel analysis, including scanning electron microscope SEM and x-ray spectroscopy studies.

Giuseppe Levi
Bologna University, Bologna, Italy

Evelyn Foschi
Bologna, Italy

Bo Höistad, Roland Pettersson and Lars Tegnér
Uppsala University, Uppsala, Sweden

Hanno Essén
Royal Institute of Technology, Stockholm, Sweden

Abstract
1. Introduction
2. Reactor characteristics and experimental setup
3. Experimental procedure
4. Data analysis method
5. Analysis of data obtained from the dummy reactor
6. Analysis of data obtained from the E-Cat
7. Rangone Plot
8. Fuel analysis
9. Summary and concluding remarks
Acknowledgements
References

Appendix 1
Radiation measurements during the long-term test of the E-cat prototype.
D. Bianchini
Bologna

Appendix 2
Alumina sample analysis
Ennio Bonetti
Department of Physics and Astronomy
University of Bologna

Appendix 3
Investigation of a fuel and its reaction product using SEM/EDS and ToF-SIMS
Ulf Bexell and Josefin Hall
Materialvetenskap, Hogskolan Dalarna

Appendix 4
Results ECAT ICP-MS and ICP-AES
Jean Pettersson
Inst. of Chemistry-BMC, Analytical Chemistry
Uppsala University

Comparing E-Cats

E-Cat HT on support frame from December test
E-Cat HT on test bed November 2012
The E-Cat has undergone many design changes since 2011 when the public got their first glimpse of the Energy Catalyzer.

Last year, the E-Cat appeared as a smooth, silicon nitride ceramic shell cylinder 33 cm in length and 10 cm in diameter, painted black. Inside was a second cylinder made of corandom, which contained resistor coils to heat the reactor with an “industrial trade secret waveform”. The innermost cylinder was made of steel, 33 mm long and 3 mm in diameter and contained the fuel charge of treated nickel powder with the secret catalyst.
 

E-Cat on scale, February 2014
E-Cat on scale February 2014
This year, the E-Cat is less than two-thirds the length, appearing as “an alumina cylinder, 2 cm in diameter and 20 cm in length, ending on both sides with two cylindrical alumina blocks (4 cm in diameter, 4 cm in length), non-detachable from the body of the reactor…”

The outer surface of the body of the E-Cat is no longer smooth, but “molded in triangular ridges, 2.3 mm high and 3.2 mm wide at the base, covering the entire surface and designed to improve convective thermal exchange…”

Design changes allowed for improved features, says the report. This year’s 2014 model E-Cat thermal generator can attain higher temperatures, while avoiding internal melting of the powder.

To initiate and control the reaction, resistor coils surrounding the inner fuel cylinder heat up from “specific electromagnetic pulses”. The authors report the reactant is a micron-sized nickel-powder mixture and that once heated, “it is plausible” that a lithium hydride delivers the hydrogen fuel for the reaction.

Last year, the E-Cat had a cyclic input power, which appeared to regulate the heat-producing reaction. On one end of this year’s new bone-shaped generator, a hole that allows for re-charging of the reactant also holds a temperature sensor that sends data to the controller. If the inner chamber gets too hot, the pulse is dialed down.

Measuring E-Cat Heat

Previous model E-Cat HT from 2013 report
Previous model E-Cat HT from 2013 report
As in the previous test, heat was measured by thermal imaging and computing the convection away from the surface of the generator.

Two thermal image cameras mapped the heat data of the generator across its surface as the E-Cat operated. Thermal imaging is a well-developed technology with a strong track record in many applications, but not in the field of cold fusion, which has relied on calorimeters and direct contact thermocouples.

New model 2014 E-Cat in operation.
Optical photo of new model E-Cat in operation.

The authors of the report state that they wanted to use a thermocouple, but that “the ridges made thermal contact with any thermocouple probe placed on the outer surface of the reactor extremely critical, making any direct temperature measurement with the required precision impossible.”

An empty E-Cat played the dummy to check that power in would match power out, as was observed.

The infrared camera’s temperature readings were converted to radiant power in watts by the Stephan-Boltzmann formula, an equation with parameters dependent on the emissivity ε of the material as well as the temperature. The outer shell of 99% alumina was divided into sections, and ε assigned to each area.

The issue of emissivity of alumina is still under discussion in the scientific community. Some believe there may be a larger source of error in the value ε. Aware that the emissivity of Alumina is temperature-dependent, the authors plot the emissivity ε over temperature saying that ε “has been measured at +/- 0.01 for each value of emissivity; this uncertainty has been taken into account when calculating radiant energy.”

E-Cat Power and Energy

Net thermal power produced by E-Cat
Plot 6: Net thermal power produced by E-Cat
Plot 6 shows a graph of the Net Power Out. The horizontal axis marks every two days and the vertical axis showing average Watts produced.

Net Power Out is the power produced by the E-Cat, minus the power inputs, and shows the amount of watts generated solely by the E-Cat.

As described in the report, after the first ten days, the input power was lowered by the controller. The team then decided to increase the input power about 100 Watts, which over six minutes, activated a large jump in temperature, equating to a net thermal power output of about 2.3 kilowatts. At peak usage, a large home may require 1-3 kilowatts electrical power.

The area under the graph over the next twenty-days represents just over 1 Megawatt-hour of energy. According to the report, the total energy produced over the month of testing was a remarkable 1.5 MWh generated from 1 gram of nickel-powder fuel.

Thus, E-Cat energy density – 1.6 billion +/- 10% Watt hours/kilogram – is much greater than any energy derived from the chemical burning of gasoline, oil, or coal.

Compare energy densities of traditional fuels modified Rangone chart by Alan Fletcher:

141011_ragone_30-ColdFusionNow

Plot-8-COP-cropLast year, E-Cat test COPs at or below three, with values of 2.9 +/- 0.3.

This year, COP was computed as well over 3, even though the device was said to not have operated at maximum output.

It has been stated many times that a COP > 3 makes a commercially-viable energy technology.

Read David French’s explanation of COP here.

Fuel Analysis

SEM of fuel Particle 1
SEM of fuel “sample granule” Particle 1
Of the 1 gram total in the reactor, a 10 mg sample was removed from the reactor and analyzed for content.

Materials analysis revealed natural nickel grains of a few microns in size as the bulk of the material. Other elements included Lithium, Aluminum, Iron, and Hydrogen. “Large amounts” of Carbon and Oxygen were also found.

But after the reaction, the ash had a “different texture than the powder-like fuel by having grains of different sizes”, and there was an unusual and unexpected shift in isotopic composition for the Nickel and Lithium grains.

Quoting from the report:

The Lithium content in the fuel is found to have the natural composition, i.e. 6Li 7 % and 7Li 93 %. However at the end of the run a depletion of 7Li in the ash was revealed by both the SIMS and the ICP-MS methods. In the SIMS analysis the 7Li content was only 7.9% and in the ICP-MS analysis it was 42.5 %. This result is remarkable since it shows that the burning process in E-Cat indeed changes the fuel at the nuclear level, i.e. nuclear reactions have taken place.

The shift in Nickel is reported as:

Another remarkable change in the ash as compared to the unused fuel is the identified change in the isotope composition of Ni. The unused fuel shows the natural isotope composition from both SIMS and ICP-MS, i.e. 58Ni (68.1%), 60Ni (26.2%), 61Ni (1.1%), 62Ni (3.6%), and 64Ni (0.9%), whereas the ash composition from SIMS is: 58Ni (0.8.%), 60Ni (0.5%), 61Ni (0%), 62Ni (98.7%), 64Ni (0%), and from ICP-MS: 58Ni (0.8%), 60Ni (0.3%), 61Ni (0%), 62Ni (99.3%), 64Ni (0%). We note that the SIMS and ICP-MS give the same values within the estimated 3% error in the given percentages.

Possible reaction pathways to these stunning results are provided in the report, but the authors caution that “reaction speculation above should only be considered as an example of reasoning and not a serious conjecture.” There is as yet no explanation for these findings.

What to think

The E-Cat has attracted financial investment, and inventor Andrea Rossi has given rights to the technology to private company Industrial Heat. They are in to win. Engineering changes are improving control of the reaction and the E-Cat is shrinking in size, now down to a breadstick.

While discussion of procedure and parameters continues, it won’t change the fact that we are within epsilon of a revolution in energy technology. Whether it is the front-running E-Cat, or another start-up that finds the right recipe, the E-Cat test report gives a peek at what is possible to achieve.

On multiple occasions, the E-Cat has publicly demonstrated steam, heat, and energy, once producing one-half megawatt power. Even if the net power out were 50% less, this E-Cat test run would still be making excess heat.

Global research, as presented at these conferences here and here, is focused on understanding the science, and finding a theory to describe this newly discovered phenomenon. Swedish research and development institute Elforsk, a partial sponsor of the test along with the Royal Swedish Academy of Sciences, will begin a ‘research initiative’ as stated by Elforsk CEO Magnus Olofsson.

Companies like Industrial Heat and men like Andrea Rossi are pushing the frontiers of engineering to create a product to re-make the world. Safe, non-polluting, with the energy-density to free a planet from the present destructive paradigm, there is nothing that will change our world more than new energy technology.

Renewing a civilization by empowering local communities, restoring our wildspaces and the wildlife that lives there, powering the hot tub in my backyard (that’s not my backyard in the picture), we are at the break-boundary. Are you ready for Apocalypse???

Cold Fusion Now!

An-impossible-invention-cover-200x279The most important thing that can be learned from the work that we are doing is that we will overcome any critical moment, so in this difficult moment for everybody, if anybody works, believing in what he does, and works with all his efforts, we can build up a new, strong economy.” —Andrea Rossi in interview with James Martinez December 2011

Ask questions of the authors at LENR-forum.

Related Links

Status Report – Rossi Pending US Patent Application David French October 2014

US Examiner Addresses Andrea Rossi US Patent Application David French March 2014

Raleigh investor Darden still bullish on controversial nuclear technology Bizjournal.com October 2014

Mats Lewan Interview E-Cat, Andrea Rossi, & An Impossible Invention John Maguire May 2014

Rossi E-Cat HT energy density off the chart Ruby Carat May 2013

Andrea Rossi in James Martinez interview [.mp3] December, 2011

E-Cat test: One-half Megawatt Self-Sustained Ruby Carat October 2011

Videos: Rossi’s “One Megaatt Plant” + New E-Cat Test (via NYTeknik) Eli Eliott September 2011

E-Cat World Frank Acland

Top