Russian Academy of Natural Sciences Marks 30th Anniversary of Pioneering Discovery

This is a re-post of a google-translate of the article first published on Regnum.ru here. Any use of materials is allowed only if there is a hyperlink to REGNUM news agency. The original article has been re-formatted slightly.


On the conference of the Coordination Council on the issue of “Cold nuclear transmutation” of the Russian Academy of Natural Sciences on March 23, 2019, dedicated to the 30th anniversary of the press conference of Martin Fleischmann and Stanley Pons on cold nuclear fusion

Dr. Martin Fleischmann (R) and Dr. Stanley Pons (L) announcing discovery of breakthrough science in energy production.

On March 23, 2019, the REGNUM press center hosted the30th Anniversary Cold Fusion Synthesis Conference: Results and Prospects, organized by the Coordination Council on the Cold Nuclear Transmutation Problem of the Russian Academy of Natural Sciences (RANS).

The main task of the one-day conference is to tell about the history of cold nuclear fusion research in the USSR and the Russian Federation, about the most promising domestic developments in this area and substantiate the thesis about the beginning of a new phase of cold fusion research – the stage of its industrial implementation.

Participants in the conference of the Russian Academy of Natural Sciences “Cold fusion – 30 years: results and prospects” on March 23, 2019 in Moscow. From left to right: A.S. Sverchkov, L.V. Ivanitskaya, A.V. Nikolaev, A.A. Kornilov, A.I. Klimov, I.B. Savvatimova, A.G. Parkhomov, A.A. Prosvirnov, V.I. Grachev, S.N. Gaydamak, S.A. Flowers

It so happened that this conference was the first event of the Coordination Council, organized more than a year ago. Such a long delay was due to the fact that, in 2018, two of its organizers and co-chair passed away, the theoretical physicist Anri Amvrosiyevich Rukhadze (09.07.1930 — 07.03.2018) the creator of the Soviet beam weapons passed away in July, and the nuclear physicist, the permanent organizer, and the organizer of the Russian and international conferences on cold fusion and ball lightning, Yuri Nikolayevich Bazhutov (04/21/1947 – 03/09/2018) passed away in March.

Anri Amvrosiyevich Rukhadze and Yury Nikolayevich Bazhutov, Organizers of the Coordination Council of the Russian Academy of Natural Sciences for the Cold Kernel Transmutation Problem

By the decision of the Presidium of the Academy of Natural Sciences, a new chairman of the council was elected the chief researcher of the Institute of Physics of the Earth, O. Yu. Schmidt of the Russian Academy of Sciences, Corresponding Member of the Russian Academy of Sciences, Academician of the Russian Academy of Natural Sciences, Doctor of Physics and Mathematics Alexei Vsevolodovich Nikolaev, and his co-chairs were the Physics Faculty of Moscow State University. MV Lomonosov, Academician of the Russian Academy of Natural Sciences Alla Alexandrovna Kornilova, and Anatoly I. Klimov, a member of the Joint Institute for High Temperatures (JIHT RAS), academician of the Russian Academy of Natural Sciences, doctor of physical and mathematical sciences.

Member of the Institute of Physical Research and Technology of the Russian University of Peoples’ Friendship (PFUR), head of the All-Russian Cold Nuclear Fusion and Ball Lightning Seminar since 1993, corresponding member of the Russian Academy of Natural Sciences Nikolai Vladimirovich Samsonenko and corresponding member of the Russian Academy of Natural Sciences Alexander G. Parkhomov were elected deputy chairmen of the board.

The work of board leaders has long been known in the international community of cold fusion researchers. In a flawless experiment, Alla Kornilova proved the possibility of implementing nuclear fusion reactions in microbiological cultures (biological transmutation), and her technology for accelerated deactivation of liquid radioactive waste using a radiation-resistant microbial association, developed in the late 1990s, passed successful state expertise in South Korea, the results of which were published on February 28, 2019 (see Kyou-Jin Yum, Jong Man Lee, Gun Woong Bahng and Shanghi Rhee with An Experiment of Radioactivity of Radionuclide (137Cs) with Multi-component Microorgani sms of 10 Strains).

In terms of its official recognition, the South Korean expertise is a landmark event for the entire scientific field of research on cold fusion, recognition which has already occurred at least in the USA, Canada, Japan, South Korea, India and China. We hope that this will finally happen in Russia.

Today, there are all the conditions for the technology of accelerated microbiological deactivation of liquid radioactive waste and contaminated land to become part of world practice before the cold fusion power reactors are widely used.

Vladimir Grachev, Editor-in-Chief of the Academy of Natural Sciences of Radio Electronics, Nanosystems, and Information Technologies (RENSIT), demonstrates the thematic issue of the journal (# 1, 2017) on cold nuclear fusion

The vortex plasma power reactor of Anatoly Klimov in its parameters is included in the group of world leaders among numerous power plants that use cold nuclear fusion energy. The work of Alexander Parkhomov on “deciphering” the e-cat reactor Andrea Rossi of ​​Russia has become widely known in the world due to its complete openness. Today, the Parkhomov reactor in all respects “comes on the heels” of its secret Italian prototype.

* * *

A few hours after the Russian conference opened, the two-day memorial colloquium at the Massachusetts Institute of Technology (2019 LANR / CF Colloquium at MIT), dedicated to the 30th anniversary of the sensational press conference at the University of Utah, Martin Fleischmann and Stanley Pons, at which they reported that they managed to get a nuclear fusion reaction during the electrolysis of water.

The participants of the Russian conference sent a greeting to the American colloquium:

“Dear colleagues, please accept our warmest regards to the International Colloquium on the 30th anniversary of cold fusion.

We were 30–40 years old when we all united around the idea of ​​cold fusion. For many years, we have conducted research, exchanged knowledge, built models and theories, and everyone has matured a bit during this time. Today, as leaders of this science, we want the thirst for knowledge not to leave us, and for us to manage to pass on our vast experience to the younger generation.

The Russian community of cold fusion researchers wishes all their friends and associates from different countries to see the fruits of the realization of our ideas and results, and have time to enjoy this in the coming years.

Successful work of the International Colloquium and see you soon at the 23rd International Conference in Italy.

Alexey Nikolaev

Alla Kornilova

Vladimir Vysotsky

Irina Savvatimova

Sergey Tsvetkov

Alexander Parkhomov

Anatoly Klimov

Vladimir Balakirev

Valery Krymsky

Nikolay Samsonenko

Vladimir Grachev

Albina Gerasimova

Natalia Famina

March 23, 2019, Moscow. ”

The MIT colloquium also did not go without pleasant surprises. It became known yesterday that the American Classifier of Patents and Trademarks (CPC – Cooperative Patent Classification) in section G21 “Nuclear Fusion Reactors” has introduced a new class of reactors 3/00 “Low-temperature nuclear fusion reactors, including the so-called cold fusion reactors.”

New section in the classification of US patents for low-temperature nuclear fusion rectors (highlighted in red)

March 23, 1989 – the day of the press conference of Martin Fleischmann and Stanley Pons – today is considered to be the date of birth of the direction of cold fusion research. However, we know that Martin Fleischman and Stanley Pons were not sole pioneers of the cold fusion phenomenon, and even the term cold fusion was coined by journalists much earlier, in 1956, in connection with the research of Nobel laureate Luis Alvarez on muon catalysis, one of the “scientifically recognized” options obtain cold nuclear fusion.

Pioneering experimental and theoretical work on cold nuclear fusion within the framework of emerging nuclear physics and quantum mechanics was carried out in the late 1920s and early 1930s. Some results of these forgotten studies for many years have been reproduced at the present experimental level only at the turn of the XX and XXI centuries.

After the end of World War II, the classics of Soviet nuclear physics — Igor Kurchatov, Yakov Zeldovich, Andrei Sakharov, Yevgeny Zababakhin — also wrote about the possibility of implementing cold nuclear fusion.

Why exactly did the poorly reproducible, modest in its results, and frankly “raw” work of Martin Fleischmann and Stanley Pons cause unprecedented interest in the whole world to begin research in cold nuclear fusion? What exactly gave impetus to thousands of highly professional and frankly amateurish research?

The answer to this question will become clear after becoming acquainted with the reports of one of the leading theorists of cold synthesis, Professor of Kiev University T. G. Shevchenko, Academician of the Russian Academy of Natural Sciences Vladimir Ivanovich Vysotsky, member of the NPO Luch, Corresponding Member of the Russian Academy of Natural Sciences Irina Borisovna Savvatimova and Corresponding Member of the Russian Academy of Natural Sciences Sergey Alekseyevich Tsvetkov.

Works on cold fusion by I. B. Savvatimova and S. A. Tsvetkov began, like many other Soviet researchers, literally several days after the press conference of Drs. Fleishman and Pons, and V. I. Vysotsky published his first article on cold fusion back in 1981.

Already in May 1989, the first applications for copyright certificates on cold fusion were filed in the USSR. The work carried out at the highest methodological level by leading specialists of the institutes and nuclear centers of Sredmash and the USSR Academy of Sciences, allowed not only to successfully reproduce the results of Fleischmann and Pons, but also to obtain nuclear fusion reactions using other methods (including shock waves, saturation from the gas phase, cavitation, electrolysis in molten salts, etc.).

At the end of 1990, the Interdepartmental Council for Chemistry and Chemical Technology of the State Committee on Science and Technology of the USSR held a closed competition on the issue “Cold synthesis stimulated mainly by electrochemical means”. According to the results of this competition, and under the guidance of the Director of the Institute of Electrochemistry of the Ural Branch of the Academy of Sciences of the USSR, Academician Alexei Nikolaevich Baraboshkin, the project of the All-Union Cold Nuclear Fusion research program was developed.

Academician Alexei Nikolaevich Baraboshkin (1925–1995), author of the unrealized All-Union research program “Cold Nuclear Fusion” of 1990

The program was not funded due to the collapse of the USSR. Despite this, by the mid-1990s, participants in the program practically solved all the tasks formulated in the draft program, the main ones of which were clarifying the conditions for the reproducibility of cold fusion reactions and determining the most promising directions for its use.

After the death of academician A.N., since 1998, Baraboshkina began the shameful scientific period of the existence of cold fusion, shameful for the Russian Academy of Sciences, which continues in Russia today. How did they almost completely forget the Soviet achievements in the study of cold fusion – one of the many “mysteries” of post-Soviet Russia?

In any case, today we are grateful to Martin Fleischmann and Stanley Pons for their civic courage, for their press conference that violated the canons of scientific communications, but played the role of a trigger to study the numerous “anomalous” manifestations of cold fusion accumulated by that time in nuclear physics, materials science, plasma physics, catalysis, biophysics, geology and other scientific disciplines.

All reports of the participants of the conference “Cold Synthesis – 30 years” will be published on the site of IA REGNUM and on the site of the Russian Academy of Natural Sciences.
by Andrey Sverchkov

Conference of the Russian Academy of Natural Sciences “Cold fusion – 30 years” is a re-post of a slightly reformatted google-translate of the article first published on Regnum.ru here. Any use of materials is allowed only if there is a hyperlink to REGNUM news agency.


Juxtapositional ending: Here is a photo taken from the 1st Russian Cold Fusion Conference. Can you name these pioneers of science?–Ruby Carat


On the 30th Anniversary of the Discovery of the Cold Fusion Phenomenon by Hideo Kozima

On the 30th Anniversary of the Discovery of the Cold Fusion Phenomenon by Hideo Kozima [.pdf] was first published in the Cold Fusion Research Laboratory CFRL News No. 107 (2019. 3. 1)

March 23 is the birthday of the cold fusion phenomenon (CFP). On this day 30 years ago, the existence of the nuclear reactions in a solid at near room temperature was declared by Martin Fleischmann and Stanley Pons at the press conference held in the University of Utah, USA. This event, right or wrong, is the start of the open research on the CFP lasting 30 years since, and has given a specific destiny to the research field we have been involved in. The investigation on the physics of the CFP has lasted without interruption and is developing day by day now.

Martin Fleischmann (March 29, 1927 – August 3, 2012) on April 7, 1995 at his office in IMRA S.A. Science Center, Sophia Antipolis, Valbonne, France. (Photo by Hideo Kozima)

I would like to recollect the history of the cold fusion research from my point of view focusing at my research activity kept about 30 years from the beginning of this science.

First of all, it is necessary to recollect the great pioneering works accomplished by Martin Fleischmann. We give a brief survey of Fleischmann’s work in Section II focusing on his mental phase of the cold fusion research. It is interesting to notice the motivation of the scientist who discovered the new phenomenon – nuclear reactions in transition metal deuterides and hydrides at around room temperature – with an inappropriate premise on the nuclear reaction between two deuterons. In Appendix A, we cite several sentences on this point from writings by Martin Fleischmann.

Here, we give a short comment on the words “Cold Fusion Phenomenon” we used to call the events observed in CF materials, i.e. materials where the CFP has been observed.

We notice the words “Cold Fusion” and “Cold Fusion Phenomena” are used in the titles of several Fleischmann’s papers (c.f. Appendix A). In the words “Cold Fusion” he had given a special meaning as we see in Section II where we survey his mental process resulted in the discovery of the CFP

“Cold Fusion Phenomena” used by Fleischmann means whole events resulting from nuclear reactions occurring in materials composed of host elements (Pd, Ti) and deuterium. In the progress of research in this field, we know now that nuclear reactions occur not only in deuterium systems but also in protium systems. Furthermore, we know the observables related to the nuclear reactions in this field ranges not only to excess energy but also to transmuted nuclei including tritium, 4He, and neutron. We can guess that the events producing these products in such various materials had been called as “phenomena” by Fleischmann. He would has used “Cold Fusion Phenomena” to express whole research field he explored and developed since 1989 combining the “cold fusion” in his mind from the beginning and “phenomena” containing various events observed. Borrowing his terminology partially, we would like to use the “Cold Fusion Phenomenon” to call the whole events thus occurring in the CF materials where occur nuclear reactions at around room temperature without acceleration mechanisms for participating particles

I. My Research on the Science of the Cold Fusion Phenomenon

Hideo Kozima (left) and John Dash (right) in February 2001 (courtesy of Hideo Kozima for Infinite Energy Magazine.)

I have published two books and many papers on the CFP. The books are:

H. Kozima, Discovery of the Cold Fusion Phenomenon – Development of Solid State-Nuclear Physics and the Energy Crisis in the 21st Century –, Ohtake Shuppan Inc., 1998, ISBN 4-87186-044-2. [Kozima 1998]

H. Kozima, The Science of the Cold Fusion Phenomenon, – In Search of the Physics and Chemistry behind Complex Experimental Data Sets –, 1st Edition, Elsevier, Amsterdam, 2006, ISBN-13: 978-0-08045-110-7. [Kozima 2006]

These books give record to the progress of my research; Book 1 had shown effectiveness of the phenomenological approach with the TNCF model (trapped neutron catalyzed model). This is also understood as evidence of the participation of neutrons on the nuclear reactions in materials composed of host elements and hydrogen isotopes (CF materials) where occurs the CFP.

Book 2 had shown that the premises assumed in the TNCF model have been explained using quantum mechanics where a new feature of nuclear interactions between nuclei of host elements at lattice sites (lattice nuclei) and hydrogen isotopes at interstitial sites (interstitial protons/deuterons) works effectively to realize a new interaction between lattice nuclei not noticed before.

In addition to the possible new interaction between lattice nuclei, the effect of complexity on the CFP has been investigated in relation to various experimental data.

It should be mentioned here about an elaborate work by Edmund Storms who compiled and published an extensive list of papers until 2007 [Storms 2007]. This work is very useful to contemplate the total image of the CFP

I-1 The Subtitle of “The Discovery of the Cold Fusion Phenomenon”

The subtitle of the Book 1 is suggestive to the history of the cold fusion research: Development of Solid State-Nuclear Physics and the Energy Crisis in the 21st Century.

The first half of this subtitle is reflected in the papers I have presented at JCF 19 held on October 2018:

H. Kozima, “Development of the Solid State-Nuclear Physics,” Proc. JCF19, 19-15 (2019) (to be published), ISSN 2187-2260. [Kozima 2019c]

In this paper, the essential contents of the solid state-nuclear physics have been systematically surveyed. The complexity in the process of formation of the CF materials and the novel features of the interactions between host elements and occluded hydrogen isotopes have been extensively investigated.

Key concepts developed in our theory are;
(1) Complexity in formation of the metal-hydrogen superlattice
(2) Super-nuclear interaction between neutrons in different lattice nuclei
(3) Neutron energy bands and neutron drops in them
(4) Nuclear interactions between neutrons in the neutron bands and nuclei at disordered sites.

The second half of that subtitle “the Energy Crisis in the 21st Century” has shed various light on the cold fusion research. This problem is discussed below in Sections II and III.

I-2. The Subtitle of the book “The Science of the Cold Fusion Phenomenon”

We now take up the subtitle of the Second Book – In Search of the Physics and Chemistry behind Complex Experimental Data Sets –.

We have noticed many characteristics of the CFP observed in metal-hydrogen systems and carbon-hydrogen systems as pointed out in our papers [Kozima 2006, 2016a]. It should be noted here that the chemistry of the CFP seems to be a key factor to form the CF materials in the electrolytic systems [Kozima 2000b (Sec. 4)]. It was noticed a characteristic of the CF materials in the electrolytic systems is the preference of a cathode metal and an electrolyte: “It should be emphasized here that there are preference for combination of a cathode metal (Pd, Ni. Ti. Pt, Au, etc.), an electrolyte (Li, N, K, or Rb) and a solvent (D2O or H2O) to induce CFP.” [Kozima 2000b (p. 45)].

The physics of the CFP seems to be the fundamental factor for the occurrence of the nuclear reactions in the CF materials. Main efforts to explain the nuclear reactions in CF materials at near room temperature without any acceleration mechanisms have been endeavored as follows [Kozima 2004, 2006, 2013, 2016b, 2019c]. To give a unified explanation of these complex experimental data containing such characteristics, we have struggled with successive trials (shown below) arrived at our final image summarized in the paper published in 2019 [Kozima 2019c].

We follow the history of our research chronologically:

Observation of neutron emission from Pd/LiOH+H2D/Pt electrolytic system [Kozima 1990].

Proposal of the TNCF model (trapped neutron catalyzed model) assuming quasi-stable neutrons in CF materials [Kozima 1994].

Publication of Book I compiling experimental data analyzed by the TNCF model [Kozima 1998].

Proposal of the ND model (neutron drop model) assuming formation of the cf-matter containing neutron drops AZΔ composed of Z protons and (A – Z) neutrons [Kozima 2000a].

Publication of Book II compiling experimental data analyzed by the TNCF and ND models [Kozima 2006]

Explanation of the neutron energy band (one of central premises of the ND model) by a quantum mechanical verification of the super-nuclear interaction between neutrons in different lattice nuclei [Kozima 2009].

Compilation of three laws in the CFP induced from experimental data sets [Kozima 2012].

Explanation of the formation of the metal-hydrogen superlattice and the nature of the three laws in the CFP by complexity inherited in the CF materials [Kozima 2013].

Justification of the phenomenological approach using the TNCF and the ND models to the CFP by inductive logic and the meta-analysis [Kozima 2019c].

II. Martin Fleischmann – A Great Scientist who co-discovered the Cold Fusion Phenomenon

In this section, we follow Fleischmann’s idea which lead to the discovery of the cold fusion phenomenon (CFP) through his papers. We know that anyone can’t be omnipotent. Even Martin Fleischmann is, regrettably, not its exception. He had been uncomfortable in the d – d fusion reactions at several points* but remained there without stepping over its conceptual barrier to a mechanism applicable not only to deuterium systems but also to protium systems.

*There are several sentences showing his insight into new mechanisms for the CFP. Followings are some of them cited from his papers referred in this paper.

“The most surprising feature of our results however, is that reactions (v) and (vi) are only a small part of the overall reaction scheme and that the bulk of the energy release is due to an hitherto unknown nuclear process or processes ) presumably again due to deuterons).” [Fleischmann 1989 (p. 308)]

“In the development of any new area of research (and especially in one likely to arouse controversy!) it is desirable to achieve first of all a qualitative demonstration of the phenomena invoked in the explanation of the observations. It is the qualitative demonstrations which are unambiguous: the quantitative analyses of the experimental results can be the subject of debate but, if these quantitative analyses stand in opposition to the qualitative demonstration, then these methods of analysis must be judged to be incorrect.” [Fleischmann 1991 (p. 2)]“An important key to the understanding of the system is given by the strange properties of D and H and T in such lattices. We must ask: how can it be that D can exist at a ∼ 100 molar concentration and high supersaturations without forming D2 in the lattice?”

“How can it be that D diffuses so rapidly thorough the lattice (diffusion coefficient > 10–7 cm2s–1 greater than that of either h or T!) whereas He is practically immobile?”

The answer to the last questions, of course, that deuterium is present as the deuteron whereas 4He does not form α-particles.” [Fleischmann 1991 (p. 9)]

In Appendix A, we have collected several sentences showing Fleischmann’s ideas on the CFP; there are his interesting ideas from the original simple one resulted in the paper published in 1989 to later ones speculating possible mechanisms for various experimental data obtained in the progress of the science in this field. Short explanations are given for each sentences from my point of view at present by an afterthought.

III. Problems related to the “the Energy Crisis in the 21st Century”

In this section, we focus on the financial phase of the scientific research in modern society which has given enormous effects on the cold fusion research.

The financial support to scientific researches has been a fundamentally important problem to promote the research programs in the modern society. We have given a short investigation on this problem [Kozima 2017].
In the discovery and development of the CFP, there are shadows of this problem from the first up to present. The financial faces of the CF research until 1990 had been written in the DOE Report I published in 1989 [DOE 1989] and also written by Taubes [Taubes 1993] and by Huizenga [Huizenga 1992]. The same problem after 1989 until 2004 appeared in the DOE Report II published in 2004 [DOE 2004].

III-1. DOE Report I [DOE 1989]

The shortcomings of the DOE Report I were discussed in my book published in 1998 [Kozima 1998 (Sec. 1.2 DOE Report), 2016a (Sec. 2 DOE Reports 1989 and 2004)] as follows:

“The Committees in the Department of Energy had been composed of experts in relevant fields to the CFP and their technical opinions should be esteemed. It should, however, be pointed out limitations imposed on them by their duty different from the researchers in this field. Their duty binds them to confine their sight and also their expertise limits their investigation of the data of the CFP inside their field preventing extension of their sight.” [Kozima 2016a (p. 163)

Let us point out mistakes in the DOE report

Conclusion (1) is based on Conclusions (2) ~ (5), and it has no basis if Conclusions (2) ~ (5) are incorrect. The issue of excess heat and fusion products discussed in Conclusion (2) has significance only when D + D reaction is assumed as the main process. This assumption was adopted by the majority of the scientists at that time, including those who discovered cold fusion.

If there is some other mechanism governing the process, this argument is no longer valid. If you are searching for truth, whether one assumption made by a scientist is correct or not has no importance. You should search for the truth based on the fact that the phenomenon did occur. From this point of view, we will show, in Chapters 11 and 12, that it is possible to explain the results of cold fusion experiments without any inconsistency.

Conclusion (3) was based on the fact that the cold fusion phenomenon presented poor reproducibility. However, the reproducibility of a phenomenon is determined by the condition of the entire system, in which the process takes place. Simple analogy from other physical phenomena should not have been used to draw a conclusion. We will also show the reasons for the poor reproducibility and the way to improve it in Chapters 11 and 12.

Conclusion (4) only shows that the interpretations of the discoverers of cold fusion were not appropriate, and it has nothing to do with the truth. It is hard to believe that board members have made such an elementary mistake. It was found later that inside solid, such as Pd or Ti, with a combination of various factors, complex phenomena can occur. There is always such possibility in science. Today, it is quite obvious to everybody. The board members might have forgotten for some reason that natural science is built upon the fact.

Conclusion (5) is similar to Conclusion (4). If any new findings had been denied only because they were contradiction with the existing knowledge, there would have been no progress in science and there will not be any progress in the future.

The discussions expressed in the DOE Report remind us Procrustes’ bed. As Procrustes used his bed as an absolute standard to measure heights of his captives, the critiques against cold fusion used d – d reaction as an inevitable standard to judge anomalous events.” [Kozima 1998 (pp. 3 – 7)]
It is difficult to evaluate scientific works without a right point of view, even if he/she has enough knowledge about the theme of the works.

III-2. DOE Report II [DOE 2004

Almost 15 years since the DOE Report I, several scientists in the U.S.A. asked their Department of Energy to reconsider the evaluation issued in 1989.

The DOE Report 2004 [DOE 2004] has a different character from that of 1989. The new Report was issued according to the request presented by several CF researchers as a document [Hagelstein 2004].

“’The Department of Energy’s (DOE) Office of Science (SC) was approached in late 2003 by a group of scientists who requested that the Department revisit the question of scientific evidence for low energy nuclear reactions. In 1989 Pons and Fleischman first reported the production of “excess” heat in a Pd electrochemical cell, and postulated that this was due to D-D fusion (D=deuterium), sometimes referred to as ‘cold fusion.’ The work was reviewed in 1989 by the Energy Research Advisory Board (ERAB) of the DOE. ERAB did not recommend the establishment of special programs within DOE devoted to the science of low energy fusion, but supported funding of peer-reviewed experiments for further investigations. Since 1989, research programs in cold fusion have been supported by various universities, private industry, and government agencies in several countries.”[DOE 2004]

According to the limited evidences given to the DOE as clearly written in the above Abstract, the material is confined to the “The experimental evidence for anomalies in metal deuterides” and does not include the data obtained in the protium systems. Therefore, the material given to the DOE is necessarily an incomplete one to show the cold fusion phenomenon as a whole. However, the Report [DOE 2004] had merit to evaluate positive phases of the CF researches after the DOE Report 1989 [DOE 1989].

“Conclusion of DOE is cited as follows: “While significant progress has been made in the sophistication of calorimeters since the review of this subject in 1989, the conclusions reached by the reviewers today are similar to those found in the 1989 review.”

“The current reviewers identified a number of basic science research areas that could be helpful in resolving some of the controversies in the field, two of which were: 1) material science aspects of deuterated metals using modern characterization techniques, and 2) the study of particles reportedly emitted from deuterated foils using state-of-the-art apparatus and methods. The reviewers believed that this field would benefit from the peer-review processes associated with proposal submission to agencies and paper submission to archival journals.” [DOE 2004]

It should be cited one of the positive comments in the Report as follows:

“It is now clear that loading level and current density thresholds are required in order to observe excess heat in these experiments. The values are consistent regardless of the approach used and the laboratory where the experiment was conducted. Early failures to reproduce the heat effect were, in part, due to not meeting these requirements. It has also been found that thermal and current density transients, which are thought to effect the chemical environment such as deuterium flux, can trigger heat ‘events’. “

“SRI has published an expression for the correlation between excess power and current density, loading, and deuterium flux. These discoveries have led to a better understanding of the phenomena and more reproducibility.” (Reviewer #9) [Kozima 2016a (pp. 164 – 165)]

Even if the nuclear transmutation in the CFP was excluded from the investigation by experts in the review team of DOE, the partial positive evaluation given in their Report was encouraging to the cold fusion society.

III-3. Two Books by Huizenga [Huizenga 1992] and Taubes [Taubes 1993]

The unpleasant episodes about the financial support around researchers described by Taubes in detail in his book [Taubes 1993] and the movement in the State of Utah to establish the National Cold Fusion Institute described by Huizenga [Huizenga 1992 (Chap. X)] had made the atmosphere around the cold fusion research dark or even black. These episodes had given very strong negative influence about the CFP on scientists all over the world.

Some examples of the negative influence are seen in book reviews for these books. The scientists wrote these reviews by only reading the books by Huizenga [Huizenga 1992] and Taubes [Taubes 1993] without reading original papers and contemplating experimental data written there. Even if a scientist is trained in one of established branches of modern science, it is not easy to understand the pioneering work in a truly novel field of researches if he/she don’t use his/her scientific spirit for the field which is alien to him/her.

It should be remembered that there is a scientist in the Cold Fusion Panel in the U.S. Department of Energy who insisted to add several words on reservation to deny the existence of the cold fusion events making the preamble as follows:

“A. Preamble Ordinarily, new scientific discoveries are claimed to be consistent and reproducible; as a result, if the experiments are not complicated, the discovery can usually be confirmed or disproved in a few months. The claims of cold fusion, however, are unusual in that even the strongest proponents of cold fusion assert that the experiments, for unknown reasons, are not consistent and reproducible at the present time.”

“However, even a single short but valid cold fusion period would be revolutionary. As as a result, it is difficult convincingly to resolve all cold fusion claims since, for example, any good experiment that fails to find cold fusion can be discounted as merely not working for unknown reasons.”

“Likewise the failure of a theory to account for cold fusion can be discounted on the grounds that the correct explanation and theory has not been provided. Consequently, with the many contradictory existing claims it is not possible at this time to state categorically that all the claims for cold fusion have been convincingly either proved or disproved. Nonetheless, on balance, the Panel has reached the following conclusions and recommendations:” [DOE 1989 (V. Conclusions and Recommendations, A. Preamble, p. 36), Kozima 1989 (Sec. 1.2 DOE Report), 2016a (Sec. 2)]

IV Conclusion

The history of the CF research in these 30 years since the observation of a part of the CFP induced by nuclear reactions in a CF material is a typical story of discovery of a new science. There had been no framework to put the events in it and we had to treat them by trial-and-error. In the processes of trial-and-error, there were many unintentional errors which might be, regrettably, supposed intentional. The social condition for scientific activity in modern times has been severe asking shortsighted success for investment which is not fit with science.

I have endeavored to give a unified scientific explanation for the complicated variety of experimental data obtained in various CF materials. Fortunately, the phenomenological approach using a model with the trapped neutrons in CF materials could explain experimental data qualitatively and sometimes quasi-quantitatively. As summarized in Section I, our trial on this line developed to enclose whole phases of the CFP. I hope that my system of explanation for the CFP thus established may be, at least, a tiny step to establish the solid state-nuclear physics even if I remember in my mind a sentence I wrote above anyone can’t be omnipotent. However, I would be behind the words “to err is human; to forgive, divine.”

Appendices

Appendix A. Martin Fleischmann on the Cold Fusion Phenomenon

[Fleischmann 1989] M, Fleischmann, S. Pons and M. Hawkins, “Electrochemically induced Nuclear Fusion of Deuterium,” J. Electroanal. Chem., 261, 301 – 308 (1989), ISSN: 1572-6657

[Fleischmann 1990] M. Fleischmann, “An Overview of Cold Fusion Phenomena,” ICCF1 lecture (March 31. 1990, Saturday), Proc. ICCF1, pp. 344 – 350 (1990)

[Fleischmann 1991] M. Fleischmann, “Present Status of Research in Cold Fusion,” Proc. ICCF2, Addition to the Conference Proceedings, pp. 1 – 10 (1991), ISBN 88-7794-045-X

[Fleischmann 1998a] M. Fleischmann, “Abstract” to “Cold Fusion: Past, Present and Future,” Proc. ICCF7.

[Fleischmann 1998b] M. Fleischmann, “Cold Fusion: Past, Present and Future,” Proc. ICCF7, pp. 119 – 127 (1998). ENECO Inc., Salt Lake City, Utah, USA

[Fleischmann 1989] Martin Fleischmann had considered the realization of the dream F. Paneth dreamed 70 years ago that deuterons will fuse in a palladium metal where they are occluded with a very high concentration.

“A feature which is of special interest and which prompted the present investigation, is the very high H/D separation factor for absorbed hydrogen and deuterium. This can be explained only fi the H+ and D+ in the lattice behave as classical oscillators (possibly as delocalised species) i.e. they must be in very shallow potential wells. In view of the very high compression and mobility of the dissolved species there must therefore be a significant number of close collisions and one can pose the question: would nuclear fusion of D+ such as
2D + 2D → 3T (1.01 MeV) + 1H (3.02 MeV) (v)
2D + 2D → 3Te (0.82 MeV) + n (2.45 MeV) (vi)
be feasible under these conditions?” ([Fleischmann 1989 (p. 302)]

However, it is interesting to notice following sentences in the same paper:
“The most surprising feature of our results however, is that reactions (v) and (vi) are only a small part of the overall reaction scheme and that the bulk of the energy release is due to an hitherto unknown nuclear process or processes ) presumably again due to deuterons).” [ibid. (p. 308)]

His motivation to this experiment published as a preliminary note in the Journal of Electroanalytical Chemistry was printed in his later article [Fleischmann 1993a]

The controversial contents of this paper in addition to other data obtained following few years had been consistently analyzed by the TNCF model [Kozima 1997].

“- – – We, for our part, would not have started this investigation if we had accepted the view that nuclear reactions in host lattices could not be affected by coherent processes. The background to this research has been presented from the point of view of the behavior of D+ in palladium cathodes since this has been our exclusive concern. A somewhat different account would be relevant to the behavior of deuterium in titanium, the other system which has been the subject of intensive research following the description of the generation of low levels of neutrons during cathodic polarization.” [Fleischmann 1990 (p. 347)]

“It is now also essential to broaden the base of the research to include both the quantitative evaluation of the effects of the many variables leading to the control and optimization of particular outputs (compare(46) ) and the extension of the range of systems showing the various effects. For the Pd-D system the central conundrum, the disparity of the excess enthalpy generation and of the expected nuclear products according to reactions (i) and (ii) however remains unsolved. It is clear that there must be other nuclear reaction paths of high cross-section and that these will only be discovered by a careful search for products on the surface and in the bulk of the electrodes (as well as in the solution and gas spaces).” [ibid. (p. 348)] [Fleischmann 1991]

He seems to have had realized the nature of the CFP and necessity of qualitative approach which had been elucidated in our recent paper [Kozima 2019b].

“In the development of any new area of research (and especially in one likely to arouse controversy!) it is desirable to achieve first of all a qualitative demonstration of the phenomena invoked in the explanation of the observations. It is the qualitative demonstrations which are unambiguous: the quantitative analyses of the experimental results can be the subject of debate but, if these quantitative analyses stand in opposition to the qualitative demonstration, then these methods of analysis must be judged to be incorrect.” [Fleischmann 1991 (p. 2)]

He was persisting in the d – d fusion reactions: “The most rudimentary measurements of the generation of tritium and of the neutron flux (or rather the lack of it!) show that the nuclear reaction paths
2D + 2D → 3T (1.01 MeV) + 1H (3.02 MeV) (i)
2D + 2D → 3Te (0.82 MeV) + n (2.45 MeV) (ii)
which are dominant in high energy fusion (and which have roughly equal cross-sections under those conditions) contribute to only a very small extent to the observed phenomena.

We reach the conclusions:
i. The lattice has an important influence on the nuclear processes;
ii. The observed processes are substantially aneutronic;
iii. The generation of excess enthalpy is the main signature of these new nuclear processes.” [Fleischmann 1991 (p. 4)]

He was aware of the correlation between the super-diffusivity of D in Pd and the CFP in it.

“An important key to the understanding of the system is given by the strange properties of D and H and T in such lattices. We must ask: how can it be that D can exist at a ∼ 100 molar concentration and high supersaturations without forming D2 in the lattice?”

“How can it be that D diffuses so rapidly thorough the lattice (diffusion coefficient > 10–7 cm2s–1 greater than that of either h or T!) whereas He is practically immobile?”

“The answer to the last questions, of course, that deuterium is present as the deuteron whereas 4He does not form α-particles.” [Fleischmann 1991 (p. 9)]

This point has been explained in our recent paper [Kozima 2019c]

[Fleischmann 1998a, 1998b] He explained his basic concept of his experiment on the CFP done before 1989.

“In 1983, Stanley Pons and I posed ourselves the following two question:
i) Would the nuclear reactions of deuterons confined in a lattice be faster (and different) from the fusion of deuterons in a plasma?
ii) Could such nuclear reactions be detected?” [Fleischmann 1998a]

He was adhered to the d – d fusion reactions and looking for a mechanism to realize them in solids. He considered the Q.F.T (quantum field theory) is the savior for his expectation:

“- – – The scientific importance lies in the fact that whereas the Bohm-Aharanov Effect is a clear demonstration of the need to replace the C.M. (classical mechanics) by the Q.M. (quantum mechanics) paradigm, the Coehn-Aharanov Effect (indeed, “Cold Fusion” in general) is a demonstration of the need to go one step further to the Q.F.T. (quantum field theory) paradigm.” [Fleischmann 1998b (p. 123)]

References

[DOE 1989] DOE, “Cold Fusion Research,” November 1989, A Report of the Energy Research Advisory Board to the United States Department of Energy, Washington, DC 20585. DOE/S – – 0073, DE90 005611

[DOE 2004] “Report of the Review of Low Energy Nuclear Reactions.”
http://www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/CF_Final_120104.pdf. This report is posted at the New Energy Times website:
http://newenergytimes.com/v2/government/DOE2004/7Papers.shtm

[Fleischmann 1989] M, Fleischmann, S. Pons and M. Hawkins, “Electrochemically induced Nuclear Fusion of Deuterium,” J. Electroanal. Chem., 261, 301 – 308 (1989), ISSN: 1572-6657

[Fleischmann 1990] M. Fleischmann, “An Overview of Cold Fusion Phenomena,” ICCF1 lecture (March 31. 1990, Saturday), Proc. ICCF1, pp. 344 – 350 (1990)

[Fleischmann 1991] M. Fleischmann, “Present Status of Research in Cold Fusion,” Proc. ICCF2, Addition to the Conference Proceedings, pp. 1 – 10 (1991), ISBN 88-7794-045-X

[Fleischmann 1998a] M. Fleischmann, “Abstract” to “Cold Fusion: Past, Present and Future,” Proc. ICCF7

[Fleischmann 1998b] M. Fleischmann, “Cold Fusion: Past, Present and Future,” Proc. ICCF7, pp. 119 – 127 (1998). ENECO Inc., Salt Lake City, Utah, USA

[Hagelstein 2004] P.L. Hagelstein, M.C. H. McKubre, D.J. Nagel, T.A. Chubb, and R.J. Hekman, “New Physical Effects in Metal Deuterides,” (paper presented to DOE) posted at DOE website:
http://www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/CF_Final_120104.pdf

[Huizenga 1992] J.R. Huizenga, Cold Fusion―The Scientific Fiasco of the Century, University of Rochester Press, Rochester, NY, USA, 1992. ISBN 1-87882-207-1

[Kozima 1990] H. Kozima, S. Oe, K. Hasegawa, H. Suganuma, M. Fujii, T. Onojima, K. Sekido and M. Yasuda, “Experimental Investigation of the Electrochemically Induced Nuclear Fusion,” Report of Faculty of Science, Shizuoka University, 24, pp. 29 -34 (1990), ISSN 0583-0923

[Kozima 1994] H. Kozima, “Trapped Neutron Catalyzed Fusion of Deuterons and Protons in Inhomogeneous Solids,” Transact. Fusion Technol., 26, 508 – 515 (1994), ISSN: 0748-1896.

[Kozima 1997] H. Kozima, S. Watanabe, K. Hiroe, M. Nomura, M. Ohta and K. Kaki, “Analysis of Cold Fusion Experiments generating Excess Heat, Tritium and Helium,” J. Electroanal. Chem., 425, pp. 173 – 178 (1997), ISSN 1572-6657.

[Kozima 1998] H. Kozima, Discovery of the Cold Fusion Phenomenon – Development of Solid State-Nuclear Physics and the Energy Crisis in the 21st Century –, Ohtake Shuppan Inc., 1998, ISBN 4-87186-044-2.

[Kozima 2000a] H. Kozima. “Neutron Drop: Condensation of Neutrons in Metal Hydrides and Deuterides”, Fusion, Technol. 37, 253 – 258 (2000), ISSN 0748-1896.

[Kozima 2000b] H. Kozima, “Electroanalytical Chemistry in Cold Fusion Phenomenon,” Recent Research Development in Electroanalytical Chemistry, Vol. 2 – 2000, pp. 35 – 46, Ed. S.G. Pandalai, Transworld Research Network, (2000), ISBN 81-86846-94-8.

[Kozima 2004] H. Kozima, “Quantum Physics of Cold Fusion Phenomenon,” in Developments in Quantum Physics, Ed. V. Krasnoholovets and F. Columbus, Nova Science Pub. Inc., pp. 167 – 196 (2004), ISBN 1-59454-003-9.

[Kozima 2006] H. Kozima, The Science of the Cold Fusion Phenomenon, – In Search of the Physics and Chemistry behind Complex Experimental Data Sets –, 1st Edition, Elsevier, Amsterdam, 2006, ISBN-13: 978-0-08045-110-7.

[Kozima 2009] H. Kozima, “Non-localized Proton/Deuteron Wavefunctions and Neutron Bands in Transition-metal Hydrides/Deuterides,” Proc. JCF9, pp. 84 – 93 (2009), ISSN 2187-2260. http://jcfrs.org/proc_jcf.html

[Kozima 2012] H. Kozima, “Three Laws in the Cold Fusion Phenomenon and Their Physical Meaning,” Proc. JCF12 (Kobe, Japan, December 17 – 18, 2011), pp. 101 – 114 (2012), ISSN 2187-2260. http://jcfrs.org/proc_jcf.htm

[Kozima 2013] H. Kozima, “Cold Fusion Phenomenon in Open, Nonequilibrium, Multi-component Systems – Self-organization of Optimum Structure,” Proc. JCF13 13-19, pp. 134 – 157 (2013), ISSN 2187-2260

[Kozima 2016a] H. Kozima, “From the History of CF Research – A Review of the Typical Papers on the Cold Fusion Phenomenon –,” Proc. JCF16, 16-13, pp. 116‐157 (2016), ISSN 2187-2260 and posted at the JCF website; http://www.jcfrs.org/proc_jcf. html

[Kozima 2016b] H. Kozima and K. Kaki, “The Cold Fusion Phenomenon and Neutrons in Solids,” Proc. JCF16, 16-14, 158 – 198 (2016), ISSN 2187-2260 at the JCF website: http://jcfrs.org/file/jcf16-proceedings.pdf

[Kozima 2017] H. Kozima, “The Sociology of the Cold Fusion Phenomenon – An Essay –,” Proc. JCF17, 17-13, pp. 148‐219 (2017), ISSN 2187-2260 and posted at the JCF website: http://www.jcfrs.org/proc_jcf. html

[Kozima 2019a] H. Kozima and H. Yamada, “Characteristics of the Cold Fusion Phenomenon,” Reports of CFRL, 19-1, pp. 1 – 31 (2019) posted at CFRL website:
http://www.kozima-cfrl.com/Papers/paperf/paperf.html


[Kozima 2019b] H. Kozima, “Inductive Logic and Meta-analysis in the Cold Fusion Phenomenon,” Reports of CFRL, 19-2, pp. 1 – 26 (2019) posted at CFRL website:
http://www.kozima-cfrl.com/Papers/paperf/paperf.html

[Kozima 2019c] H. Kozima, “Development of the Solid State-Nuclear Physics,” Proc. JCF19, 19-3 , pp. 1 – 36 (2019) posted at CFRL website:
http://www.kozima-cfrl.com/Papers/paperf/paperf.html

[Storms 2007] E. Storms, The Science of Low Energy Nuclear Reaction – A Comprehensive Compilation of Evidence and Explanations about Cold Fusion –, World Scientific, Singapore, 2007, ISBN-10 981-270-620-8

[Taubes 1993] G. Taubes, Bad Science―The Short Life and Weird Times of Cold Fusion, Random House Inc., New York, USA, 1993, ISBN 0-394-58456-2

List of papers published by the Cold Fusion Research Laboratory [html][.pdf]

(On March 23, 2019 at the 30th Anniversary of the Discovery of the CFP) —Hideo Kozima

On the 30th Anniversary of the Discovery of the Cold Fusion Phenomenon by Hideo Kozima [.pdf] was first published in the Cold Fusion Research Laboratory CFRL English News No. 107 (2019. 3. 1)

Stephen Bannister on the Cold Fusion Now! podcast

Episode 22 of the Cold Fusion Now! podcast features Dr. Stephen C. Bannister, an Economist at University of Utah Salt Lake City. Dr. Bannister received his undergraduate degree from the University of Illinois, Champaign and then spent a career in high technology, becoming Director of Novell in Provo, Utah.

He then returned for a PhD in Economics at University of Utah where most of his research centers around energy and economic activity and is strongly connected to climate change.

Listen to Dr. Stephen Bannister on the Cold Fusion Now! podcast with Ruby Carat on the podcast page here.

Approaching the 30th anniversary of the announcement of cold fusion by Drs. Martin Fleischmann and Stanley Pons on March 23, 1989, Ruby asked Dr. Bannister if there was any activity on the campus to commemorate the event.

“If you go to the chemistry department and bring up this topic – which I have done – they come back and say “Oh no no no, that’s pathological science, and we don’t want to talk about it much”, says Dr. Bannister, “and I’m not sure that anyone in the physics department has much of an interest in [cold fusion] today. I don’t know that, but I’ve talked to some of the grad students in physics and there’s no awareness of it at that level. However, there is some interest in the Department of Earth Sciences.”

Dr. Bannister learned that a former post-doc at Los Alamos National Lab, who had prepared a report on the LENR work of Dr. Edmund Storms, had subsequently become Dean at the College of Earth Sciences at University of Utah. He and Dr. Bannister are “now in communication thinking about how to begin to advance the rehabilitation of the reputations of Drs. Fleischmann and Pons, and do some other things, although its not very formal yet.”

The National Cold Fusion Institute, funded right after the 1989 announcement, has an archive housed in the UU Library, offering another chance to bring more material to light.

Listen to Dr. Stephen C. Bannister discuss the relationship between energy inputs and economic output, and how breakthrough energy fits in, on the Cold Fusion Now! podcast with Ruby Carat on our podcast page here.


The LANR/CF Colloquium happens this weekend!

Go to http://theworld.com/~mica/2019colloq.html to register now!

“One of the greatest contributions made to science”

Portrait of Martin Fleischmann by Winston August 2012

Infinite Energy Magazine Issue #117 highlights the new book Developments in Electrochemistry Science Inspired by Martin Fleischmann with the chapter on cold fusion written by veteran Navy scientist Melvin Miles and Michael McKubre, Director Energy Research Lab at SRI International, both of whom collaborated with Martin Fleischmann on cold fusion research for over a decade.

Read the original article here.

Science-Inspired-200x287New Book Honors Scientific Legacy of Fleischmann
by Christy L. Frazier

A new book honoring the scientific legacy of the late Prof. Martin Fleischmann has just been published by John Wiley & Sons. Developments in Electrochemistry: Science Inspired by Martin Fleischmann is edited by Derek Pletcher, Zhong-Qun Tian and David E. Williams, with 19 chapters (including the Introduction) about electrochemistry-related science written by electrochemists. Infinite Energy readers will be particularly interested in the chapter written by Melvin Miles and Michael McKubre, “Cold Fusion After a Quarter-Century: The Pd/D System.” Miles notes that he was picked as the cold fusion author and asked McKubre to assist him. He said he may have been chosen because he is “the only one other than Stan Pons who has written papers with Martin Fleischmann about calorimetry and the palladium-deuterium system.” Miles co-authored a number of papers during the last part of Fleischmann’s career.

Wiley’s website describes the book as “neither a biography nor a history” of Fleischmann’s contributions but rather a “series of critical reviews of topics in electrochemical science associated with Martin Fleischmann but remaining important today.” The chapters begin with an outline of Fleischmann’s contribution to the topic, followed by examples of research, established applications and prospects for future developments.

Editor Derek Pletcher worked with Fleischmann for 15 years at the University of Southampton. The book project was initiated because, “We believe Martin to have been a leading international scientist with very broad interests and a very warm personality and that we had benefitted greatly from our association with him (this includes some who were/are strongly anti cold fusion). We were therefore seeking a way to honor his memory and this became the book.”

The editors’ introduction, “Martin Fleischmann: The Scientist and the Person,” highlights great respect for Fleischmann’s approach to science and forward-thinking skill. They write: “Often his ideas were ahead of the ability of equipment to carry out the experiments, and it was only a few years later that the ideas came to fruition and it became possible to obtain high-quality experimental data.”

One of the editors, David Williams, was on the team at Harwell Atomic Energy Laboratory that purported to have negative results in replicating the cold fusion effect in 1989. Yet, in the Introduction the basic story of cold fusion is laid out and Fleischmann’s willingness to the end of his life in August 2012 to “defend the underlying concepts as well as his experiments” is recorded. They conclude, “It is inevitable and appropriate that this book contains a chapter on cold fusion that takes a positive view.”

McKubre appreciates the editors’ willingness to include what became a major part of Fleischmann’s scientific legacy. He said of the book, “This was a first class endeavor. I am very happy that it was done, and that cold fusion was included. At the end of Julian Schwinger’s life they rewrote his biography and reedited his bibliography to exclude mention of cold fusion. It is great to see that the electrochemistry community is not as narrowminded as the nuclear physics community seemed to be.”

The cold fusion chapter by Miles and McKubre focuses on “the multithreshold materials constraints that prevented easy reproducibility” of the Fleischmann-Pons (F-P) heat effect and the “brilliant, but largely not understood, implementation” of the F-P calorimeter. They note that some will believe that cold fusion “represents Martin Fleischmann’s greatest scientific failure.” They argue that the work may instead be one of the greatest contributions that Fleischmann made to science, noting that “few would have had the vision to see such a possibility, the courage to pursue it and the skill to test it” and that the F-P heat effect “is the sort of invention that only a man of Fleischmann’s knowledge, genius, confidence and courage was capable of making.”

Miles and McKubre conclude that “the future of Fleischmann’s dream must be practical, and therefore the heat effects must be cheaper, easier and of much larger scale and gain.” Future experiments are likely to utilize small-dimension materials including metals other than palladium in high-temperature.

Other chapters in the book include: A Critical Review of the Methods Available for Quantitative Evaluation of Electrode Kinetics at Stationary Macrodisk Electrodes; Electrocrystallization: Modeling and Its Application; Nucleation and Growth of New Phases on Electrode Surfaces; Organic Electrosynthesis; Electrochemical Engineering and Cell Design; Electrochemical Surface-Enhanced Raman Spectroscopy; Applications of Electrochemical Surface-Enhanced Raman Spectroscopy; In-Situ Scanning Probe Microscopies; In-Situ Infrared Spectroelectrochemical Studies of the Hydrogen Evolution Reaction; Electrochemical Noise: A Powerful General Tool; From Microelectrodes to Scanning Electrochemical Microscopy; In-Situ X-Ray Diffraction of Electrode Surface Structure; Tribocorrosion; Hard Science at Soft Interfaces; Electrochemistry in Unusual Fluids; Aspects of Light-Driven Water Splitting; Electrochemical Impedance Spectroscopy.

Developments in Electrochemistry: Science Inspired by Martin Fleischmann is available in hardcover ($115) and e-book format ($92.99) from the publisher at http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118694430.html, and is also available on Amazon. According to editor Derek Pletcher, proceeds from sales will be used to fund a Biannual Fleischmann Lecture at the Annual Conference of the Electrochemistry Group of the Royal Society of Chemistry.

Related Links

“Science Inspired by Martin Fleischmann”

Martin Fleischmann in 10 minutes

Aether the Theory of Relativity and LENR Energy

“We may say that according to the general theory of relativity space is endowed with physical qualities.      -In this sense-        -Therefore-  

There exists an ether.” – Albert Einstein

 

 

Way Back

In 1989, the popular yet controversial Cold Fusion ‘Fleischmann and Pons Effect’, challenged the notions of theoretical physicists of the time. Newly established arts today, like cold fusion-LENR-low energy nuclear reaction science, continue to do so.

Science progresses by challenging established notions that are not able to properly hold observed phenomenon within a theoretical framework. Through this process of – researching the unknown – new scientific arts become established. Then theoretical physicists have a whole new playground in which to make predictions; as well as an arena in which to create new physical theories and grandiose mathematical models of physics, such as the likes of Einstein’s.

Many modern arts of science weren’t firmly established when early cold fusion researchers started college. A few of these arts are notable in the LENR energy arena today. Nano Engineering and Science, with the likes of carbon nanotubes, allows for new methods of constructing the required fractal geometries within the low energy nuclear reactive lattice. Quantum Physics and Engineering also play an important role with a deeper understanding of the atom. This ever-growing field, understanding the actions in the subatomic realm, provides new glimpses into the inner workings of the low energy nuclear reactive environment. In this dynamic multidisciplinary field, LENR Sciences, both theory and engineering, are improving as we progress in the art.

During the early 80’s, one would venture to say, there were three or four dozen subatomic particles that we knew of. During Einstein’s time perhaps even less. Now we are looking at well over a hundred and fifty of them. The list is mind-boggling to conceptualize, observe, and then finally comprehend. (that’s what we have open minded experimental and theoretical scientists for) The article “Not so Elementary, My Dear Electron” is an example. It takes us far from the “Standard Model” of my youth. The once “elementary” electron has been ‘split’ into three… a holon, spinon, and orbiton.

After reading that article my pre-concieved grip on reality became so unhinged. That night I had a dream finding myself shrunk down, traveling the empty space within the low energy nuclear reactive environment. There, right before my eyes, an electron split into its’ three elements -WOW- One Went Flying OFF Into a Far Distancing Dimension

Then it Went Super Nova!!!               Lesson Learned

Watch what you read before nodding off into

The Aether of the Dreamland

My Heart Hopes That

We can ALL

Enjoy

 

Aether Science

Another art pertaining to the low energy nuclear environment is Aether Science – the science of the vacuum. The Aether, or ether, is that which fills “empty space”. “Space” is found in the outer reaches between planets and between stars and “Space” is found between atoms. There is more space than matter in the universe. More space between the atoms in molecules and more space between the subatomic particles of the atom than there is matter… yet space is not, in reality, truly empty. Read “Dark Energy Dark Matter” NASA

Quantum Science: Pushing the envelope and inviting us to explore the physical realities within the Aether. (links go to the U.S. DoE search engine) Research these sciences at the U.S Department of Energy – Office of Science website links: into Dark Energy (see 46 papers – year 2013), into Zero Point Energy (see 13 papers – year 2013) , into Vacuum Field (see 43 papers –  under ‘Energy’), into Gravity (see 103 papers – year 2013), into LENR (see 38 papers – under ‘Low Energy Nuclear Reaction’)

During an Address delivered on May 5th, 1920, at the University of Leyden

A theoretical physicist once said,

“As to the part which the new ether is to play in the physics of the future we are not yet clear. We know that it determines the metrical relations in the space-time continuum, e.g. the configurative possibilities of solid bodies as well as the gravitational fields; but we do not know whether it has an essential share in the structure of the electrical elementary particles constituting matter. Nor do we know whether it is only in the proximity of ponderable masses that its structure differs essentially from that of the Lorentzian ether; whether the geometry of spaces of cosmic extent is approximately Euclidean. But we can assert by reason of the relativistic equations of gravitation that there must be a departure from Euclidean relations, with spaces of cosmic order of magnitude, if there exists a positive mean density, no matter how small, of the matter in the universe. In this case the universe must of necessity be spatially unbounded and of finite magnitude, its magnitude being determined by the value of that mean density.

If we consider the gravitational field and the electromagnetic field from the standpoint of the ether hypothesis, we find a remarkable difference between the two. There can be no space nor any part of space without gravitational potentials; for these confer upon space its metrical qualities, without which it cannot be imagined at all. The existence of the gravitational field is inseparably bound up with the existence of space. On the other hand a part of space may very well be imagined without an electromagnetic field; thus in contrast with the gravitational field, the electromagnetic field seems to be only secondarily linked to the ether, the formal nature of the electromagnetic field being as yet in no way determined by that of gravitational ether. From the present state of theory it looks as if the electromagnetic field, as opposed to the gravitational field, rests upon an entirely new formal motif, as though nature might just as well have endowed the gravitational ether with fields of quite another type, for example, with fields of a scalar potential, instead of fields of the electromagnetic type.

Since according to our present conceptions the elementary particles of matter are also, in their essence, nothing else than condensations of the electromagnetic field, our present view of the universe presents two realities which are completely separated from each other conceptually, although connected causally, namely, gravitational ether and electromagnetic field, or — as they might also be called — space and matter.

Of course it would be a great advance if we could succeed in comprehending the gravitational field and the electromagnetic field together as one unified conformation. Then for the first time the epoch of theoretical physics founded by Faraday and Maxwell would reach a satisfactory conclusion. The contrast between ether and matter would fade away, and, through the general theory of relativity, the whole of physics would become a complete system of thought, like geometry, kinematics, and the theory of gravitation.”

Albert Einstein

What is Aether?

Robert B. Laughlin Nobel Laureate in Physics-Stanford University-The Ether

In contemporary theoretical physics: “It is ironic that Einstein’s most creative work, the general theory of relativity, should boil down to conceptualizing space as a medium when his original premise [in special relativity] was that no such medium existed. The word ‘ether’ has extremely negative connotations in theoretical physics because of its past association with opposition to relativity. This is unfortunate because, stripped of these connotations, it rather nicely captures the way most physicists actually think about the vacuum. Relativity actually says nothing about the existence or nonexistence of matter pervading the universe, only that any such matter must have relativistic symmetry. It turns out that such matter exists. About the time relativity was becoming accepted, studies of radioactivity began showing that the empty vacuum of space had spectroscopic structure similar to that of ordinary quantum solids and fluids. Subsequent studies with large particle accelerators have now led us to understand that space is more like a piece of window glass than ideal Newtonian emptiness. It is filled with ‘stuff’ that is normally transparent but can be made visible by hitting it sufficiently hard to knock out a part. The modern concept of the vacuum of space, confirmed every day by experiment, is a relativistic ether. But we do not call it this because it is taboo.” Laughlin, Robert B. (2005). “A Different Universe: Reinventing Physics from the Bottom Down”  pp. 120–121.

from the Bottom Down” A REVIEW By Jeremy Chunn

“Tired of the predictable ‘clockwork’ nature of the physical world as defined by Newtonian laws? Then you’ll find a friend in Robert B. Laughlin. He suspects the fact that Newtonian laws break down at quantum levels and fail to predict all phases between states is evidence the physical world is still highly mysterious.”

Paul Dirac wrote in 1951

“Physical knowledge has advanced much since 1905, notably by the arrival of quantum mechanics, and the situation [about the scientific plausibility of Aether] has again changed. If one examines the question in the light of present-day knowledge, one finds that the Aether is no longer ruled out by relativity, and good reasons can now be advanced for postulating an Aether. We have now the velocity at all points of space-time, playing a fundamental part in electrodynamics. It is natural to regard it as the velocity of some real physical thing. Thus with the new theory of electrodynamics [vacuum filled with virtual particles] we are rather forced to have an Aether”. “Is there an Aether?”, Nature 168 (1951), p. 906.

… Is there an Aether?” abstract by Dirac St. John’s College, Cambridge. Oct. 9, 1951

IN the last century, the idea of a universal and all-pervading æther was popular as a foundation on which to build the theory of electromagnetic phenomena. The situation was profoundly influenced in 1905 by Einstein’s discovery of the principle of relativity, leading to the requirement of a four-dimensional formulation of all natural laws. It was soon found that the existence of an æther could not be fitted in with relativity, and since relativity was well established, the æther was abandoned.

John Bell, interviewed by Paul Davies in “The Ghost in the Atom” 1986

Has suggested that an Aether theory might help resolve the EPR paradox by allowing a reference frame in which signals go faster than light. He suggests Lorentz contraction is perfectly coherent, not inconsistent with relativity, and could produce an aether theory perfectly consistent with the Michelson-Morley experiment.

Bell suggests the aether was wrongly rejected on purely philosophical grounds:

“What is unobservable does not exist”

Besides the arguments based on his interpretation of quantum mechanics; Bell also suggests resurrecting the aether because it is a useful pedagogical device. That is, many problems are solved more easily by imagining the existence of an aether.   The Ghost in the Atom: A Discussion of the Mysteries of Quantum Physics

As noted by Alexander Markovich Polyakov in 1987

Elementary particles existing in nature resemble very much excitations of some complicated medium (Aether). We do not know the detailed structure of the Aether but we have learned a lot about effective Lagrangians for its low energy excitations. It is as if we knew nothing about the molecular structure of some liquid but did know the Navier-Stokes equation and could thus predict many exciting things.

Clearly, there are lots of different possibilities at the molecular level:

Leading to the same low energy picture. – end quote

From Harwood Academic Publishers (1987), A. M. Polyakov, “Gauge Fields and Strings” sec,12

LENR and the Aether – Harold Aspden

‘Heavy Electron’ -‘Mu-meson’ Vacuum Field – Electron Proton ‘Creation’

Dr. Harold Aspden is of particular interest. A brilliant man, he successfully predicted the mass of the proton and was a pioneer of efficient thermal electric conversion devices. He was the first to be issued a U.S. patent with ‘cold fusion’ contained in the text of the application. A further example of his brilliance is his theoretical papers on Aether Science. This list is of ten Harold Aspden patents granted, applied, or cited  that concern “Cold Fusion” LENR and the Aether (ZPE). Here is an excellent biography of the honorable Dr. Harold Aspden including all theories, works published, and documented efforts in the Aether and LENR sciences.

GIVE THANKS and Support to Pure Energy Systems News for compiling the best in LENR history and news.

Ten of the 119 patents found at Cold Fusion NowHarold Aspden Patent Tribute – Honoring Dr. Aspden

For links to these patents open the “Harold Aspden Patent Tribute” 

  1. Cold Nuclear Fusion Method and Apparatus App. – Filed Apr 20, 1990 – Published Nov 1, 1990 – Richard Geoffrey Belton – The Broken Hill Proprietary Company Limited May 23, 1994, Dec 8, 1994, Aspden, Harold, Hydrogen activated heat generation apparatus
  2. Hydrogen Activated Heat Generation Apparatus App. – Filed May 23, 1994 – Published Dec 8, 1994 – Aspden, Harold, Eneco, Inc. Inventors. Harold Aspden. Applicant. Aspden, Harold
  3. Cold Nuclear Fusion Method and Apparatus App. – Filed Apr 20, 1990 – Published Nov 1, 1990 – Richard Geoffrey Belton – The Broken Hill Proprietary Company Limited May 23, 1994, Dec 8, 1994, Aspden, Harold, Hydrogen activated heat generation apparatus
  4. Methods and Systems for Generating High Energy Photons or Quantum… Grant – Filed Nov 21, 2001 – Issued Aug 30, 2005 – Kiril B. Chukanov – Chukanov Quantum Energy, L.L.C.
… OTHER PUBLICATIONS Aspden, Harold, “Aether Science Papers: Part I: The Creative Vacuum,” Aether Science Papers, (1996), pp. 26-32. Chukanov, KM
  5. Device to Move an Object Back and Forth Grant – Filed Jan 22, 2008 – Issued Mar 8, 2011 – Harvey Emanuel Fiala, 
Harold E. Puthoff, and Harold Aspden are recent exponents of  ZPE. …. Aspden, Harold: Power from Space: Inertia and Gravitation, Energy Science Report No.
  6. Inertial Propulsion Device to Move an Object Up and Down Grant – Filed Feb 11, 2011 – Issued Nov 29, 2011 – Harvey E. Fiala
… energy (ZPE) or space energy at every point in space, possibly even of the order or magnitude of nuclear energy
  7. Hydrogen Activated Heat Generation Apparatus App. – Filed May 23, 1994 – Published Feb 9, 1995 – Inventors. Harold Aspden. Applicant. Aspden, Harold
  8. Production of Thermal Energy App. – Filed Jun 4, 1990 – Published Dec 13, 1990 – Cyril Barrie Edwards – Edwards, Barrie, Cyril
… May 23, 1994, Dec 8, 1994, Aspden, Harold, Hydrogen activated heat generation apparatus
  9. Method for Producing Plasma Nuclear Fusion App. – Filed Apr 9, 1990 – Published Oct 24, 1990 – Shunpei Yamazaki -Semiconductor Energy Laboratory Co., Ltd. May 23, 1994, Dec 8, 1994, Aspden, Harold, Hydrogen activated heat generation apparatus
  10. Solid State Surface Micro-Plasma Fusion Device App. – Filed May 28, 1992 – Published Dec 23, 1992 – Ell Yeong Kim – Purdue Research Foundation May 23, 1994, Dec 8, 1994, Aspden, Harold, Hydrogen activated heat generation apparatus

Told by Dr. Aspden

His story of a ‘Cold Fusion’ institutional firewall at the U.S. patent office

The tactics I adopted in my efforts to secure a granted patent involved filing a U.S. continuation-in-part application based on the pending cold fusion application that had survived the PCT stage, but before it came under the executioner’s axe wielded by Harvey Behrend. My plan was to emphasize the thermoelectric aspects of the invention, but discuss their relevance to ‘cold fusion’ and incorporate a very substantial Appendix on that subject. I wrote the specification discussing the merits of ‘cold fusion’ and offered as an invention a special form of apparatus which I regarded as useful for testing the cold fusion process.

There was a 50:50 chance that the new application would be assigned to Harvey Behrend’s examining group, but the abstract stressed thermoelectric energy conversion and not cold fusion, so I had my fingers crossed in hoping that Art group 1102 and not Harvey Behrend’s Art group 2204 would be put in charge of the case in the U.S. Patent and Trademark Office.

So that you, the reader, may understand what this is all about, and particularly so that my colleagues in the patent profession in Europe who may come to hear about this as well may understand, I feel it appropriate to quote a few words from an article which appeared in the July-November double issue of ‘Infinite Energy’, Nos. 15 and 16, at page. 86.

I refer to Dr. Hal Fox’s article ‘New Energy Sources for the Near Future: An Open Letter to Decision Makers’. Hal Fox is Editor of the Journal of New Energy. He is located in Utah, where the saga of cold fusion was born, and he has followed the cold fusion theme as closely as anyone over the years dating from March 1989, when that hope and prospect for a new energy technology was first announced.

Hal Fox, Quote…

“A university professor who has been supported by a multi-million dollar hot fusion contract and who becomes an advisor to the Department of Energy is unlikely to advise the government to fund a competitive low-energy technology. There would be very strong university pressure to continue in the development of hot fusion! This combination of federal funds, appointments to advisory groups, and the pressures for institutional funds on the advisers, has resulted in scientists becoming lobbyists with the following results:

  • The Office of Patents and Trademarks has been advised not to allow patents on competitive technology to hot fusion.

  • Leaders of some professional societies (such as the American Physical Society) have lobbied to prevent major peer-reviewed journals from publishing articles about competing technologies.

Aether: How it relates to cold fusion (link)

A BREAKTHROUGH: U.S. PATENT NO. 5,734,122

Cold Fusion Appears in a U.S. Patent!

Copyright © 1998 Harold Aspden

The Fusion Criteria

In a very hot proton gas protons can combine to create heavier atomic nuclei. This is facilitated if there is something effectively neutralizing the charge repulsion between the protons. A proton or anti-proton charge can become neutral if a beta particle of opposite polarity combines with it in some way to be seen as a neutron. Alternatively it is conceivable that in the very energetic field conditions that one can foresee, particularly in the presence of strong gravity fields, the field medium itself can be such as to overcome the mutual repulsion or the medium itself may become electrically polarized to provide a background that can serve as the neutralizing influence. In any event, the high energy physics of the scenario by which protons synthesize heavier forms of matter has to explain why hot fusion occurs and the picture just presented has to be very close to what has just been outlined.

Now, there is one important aspect here that tends to be overlooked. How do those protons get created in the first place? The scientific challenge here is not concerned with fusion but rather initial creation and the answer lies in finding the true explanation for what governs the mass of the proton. This is a theoretical exercise in which this Applicant has played an important and recognized part, because, although the world has not rushed into accepting the Applicant’s explanation, it is a fact that the precise value of the proton-electron mass ratio of 1836.152 was deduced in terms of the mu-meson field. This derivation involved collaboration with Dr. D. M. Eagles of the then National Standards Laboratory in Australia. It was reported in the U.S.A. Institute of Physics journal Physics Today in 1984 (November issue, p. 15) and was mentioned in their 1985 update by the leading U.S. researchers who measure this quantity. See R.S. Van Dyck et al: International Journal of Mass Spectroscopy and Ion Processes, 66, (1985) pp. 327-337. They noted how remarkably close the theoretical value was to the one they measured and added ‘This is even more curious when one notes that they [meaning this Applicant and Dr. Eagles] published this result several years before direct precision measurements of this ratio had begun.

‘Given that the Applicant knows how protons are created from a mu-meson field and taking into account that physicists familiar with quantum electrodynamics know that the vacuum field is the seat of activity of electron and positron creation and that mu-mesons are otherwise known as ‘heavy electrons’, it needs little imagination then to suspect that Nature is trying to create protons continuously everywhere in space. Since we do not see such protons materializing before our eyes we must infer that they exist only very transiently after creation unless the field medium has surplus energy to be shed over and above its local equilibrium requirements.

The Applicant’s Electrodynamic Research

There are long-accepted but unresolved anomalies concerning the anomalously very high forces exerted on heavy ions in a cold cathode discharge. In researching this subject the Applicant has established that the forces exerted on a heavy ion owing to its electrodynamic interaction with an electron are, in theory, enhanced by a factor equal to the ion-electron mass ratio.

This theory leads to a breach of the law that specifies balance of action and reaction, which means that energy is being exchanged with the field medium in which the electromagnetic reference frame is seated. The effective electromagnetic reference frame has a structure, as if it is formed by a fluid crystal lattice which, on a local scale, can adapt or maybe govern the shell structure of an atomic nucleus. Thus, normally, the motion of atoms and even ions in a gas or a solution will not evidence the anomalous electrodynamic effects, simply because they do not move relative to the local electromagnetic reference frame, meaning that, as far as concerns translational motion, the electrons present are the only active participant electrodynamically.

It is, however, quite a different situation when we consider a proton or a deuteron as a free ion inside the crystal host lattice of a metallic form, because there can only be one electromagnetic reference frame effective at any location in that metal. Therefore, a proton that is within a host crystal, and is free to move through it, will be seen as moving relative to the electromagnetic reference frame and then it can contribute to anomalous electrodynamic effects.

These conditions were the subject of the Applicant’s research as a Visiting Senior Research Fellow at the University of Southampton in England 1983 onwards. The Applicant had written on the subject of the proton, the deuteron and the neutron, pursuing the theme that no neutrons exist inside the deuteron and stressing that atomic nuclei are composites of beta particles and protons or antiprotons. This work was all published before 1989.

The anomalous electrodynamic forces that exist in the heavy ion/electron interaction imply a hidden source of energy and so of heat but the Applicant’s research was aimed essentially at proving the modified law of electrodynamics dictated by that research. Certainly, whilst the ability to accelerate heavy ions by drawing on a hidden source of field energy was one of the Applicant’s pursuits, at no time had the Applicant contemplated the prospect of a fusion reaction of the kind implied by Fleischmann and Pons.

Nevertheless, as soon as that latter work was reported, the research knowledge arising from the author’s investigations was seen as relevant in the onward exploration of the excess heat phenomenon.

The Applicant was not only interested because of the excess energy aspect. There was the no-neutron feature and the fact that the process involved ion migration through water. There was the fact that the deuteron was the primary agent and this Applicant had shown, from the theory of the deuteron mass and its magnetic moment, that deuterons undergo cyclic changes of state and the state which prevails for one seventh of the time, the deuteron has a neutral core, having transiently shed a beta particle. More than this, however, the author had become involved at the time with two inventions, one of which later became the subject of a U.S. Patent (Serial No. 5,065,085) and these involved anomalous energy activity in a thermoelectric context which bears upon the cold fusion issue.

The other, lesser important, of these inventions was concerned with ‘warm’ superconductivity. The Applicant’s research had suggested that substances having certain molecular mass forms are adapted to absorb impact by conduction electrons in such a way that the change of inductive energy accompanying the collision is conserved until the resulting EMF changes can impart the energy to another electron. This meant that the thermal energy of a heavy ion in the substance could be reduced to feed the normal resistance loss associated with the current. This was, therefore, a process by which anomalous heat energy activity was involved in electrodynamic interactions between heavy ions and electrons.

The more important invention of the two just mentioned was concerned with the anomalous behaviour of a thermoelectric interface between two metals when subjected to a strong magnetic field in a rather special conductor configuration. The Nernst Effect operates to cause heat carried by electrons in a metal to be converted into an electric potential energy by the ordering action of a transversely directed magnetic field.

The essential requirement for the action of the Nernst Effect is that there is a temperature gradient in the metal and, given such a temperature gradient, and the magnetic field, there will then be an electric potential gradient set up within the metal. Now, a potential gradient inside a metal conductor implies that there is inside the body of the metal a distribution of electric charge not neutralized by normal metallic conduction. The polarity of that charge is determined by the direction of the thermal gradient and the orientation of the magnetic field. It can be negative or positive by choice in the design of the apparatus used.

Besides this, the Applicant knew that the flow of a strong current through a metal conductor will promote what is known as the pinch effect in which electrodynamic forces act on the negative electron charge carriers to pinch them inwards and so set up an excess negative charge distribution inside the metal conductor.

This, plus the additional feature that a strong current flow through a metal conductor that is populated by free deuterons will promote a migration of deuterons that will bring them more frequently into near collision, all militated in favour of an invention proposing the provision of a supplementary high current closed circuit through the cathode of a cold fusion cell. That, indeed, became the subject of the patent application which the Applicant filed in U.K. on April 15, 1989, this being the priority application relied upon in the U.S. Patent Application under petition.

The Applicant, therefore, had reason to believe that the work on cold fusion would progress if the auxiliary current activation circuit were to be used.

However, in the event, the pioneer work of Fleischmann and Pons became the subject of such criticism that there was no prospect of getting R & D funding to take the subject invention forward and one is confronted with a chicken and egg scenario where disbelief of cold fusion as a scientific possibility stands in the way of securing patent grant and the doubts about securing a patent stands in the way of finding sponsorship for the development.

The Fusion Criteria Reexamined: There are three criteria that need to be satisfied simultaneously to promote and enhance the cold fusion reaction of deuterons. 

  • Firstly, there is the background incidence of the virtual mu-meson field which is trying everywhere to create protons. This is a natural activity that cannot be controlled. It is a statistical effect, but one can calculate the probability governing proton creation fluctuations in a given volume of cathode material. See comments below. 

  • Secondly, there is the need to bring the deuteron partner in the fusion process into close proximity with the target deuteron. In hot fusion reactions this is achieved by the motion associated with thermal activity. In cold fusion it is achieved by adsorbing deuterons into a host metal in which they become separate from their satellite electrons and by concentrating the loading by the deuteron population. 

  • Thirdly, as with the creation of stars and by hydrogen fusion, there is the need to provide the field which pulls the deuterons together in spite of their mutual repulsion. In cold fusion this means the provision of a neutralizing negative charge distribution within the metal body of host metal. This requires strong electron current surges resulting in heat concentrations which set up temperature gradients in company with transverse magnetic fields. However, the structural form of the host metal in relation to the current channel, the magnetic field effect and the heat conduction path require a mutually orthogonal geometry to provide an optimum action. 

Note that the surplus negative charge may result in a charge density that is quite small in relation to the positive charge of the deuteron population but every unit of charge is seated in a discrete electron and a single electron which can upset the normal charge balance of deuterons and free conduction electrons can nucleate a pair of deuterons.

Then, the creation of a proton in one deuteron accompanied by the demise of a proton in the other will convert the two deuterons into a tritium nucleus and free a proton with a beta particle transferring between the two. Alternatively one deuteron will convert into helium 3 and the proton released will be in company with a beta minus particle.

The onward reactions involving neutrons that are observed with hot fusion processes need not occur if the events involved are triggered naturally by the mu-meson activity in trying to create protons rather than by neutron bombardment.

 

Excellent Perspective From Relativity Past

 

“Ether and the Theory of Relativity” By Albert Einstein

An Address delivered on May 5th, 1920, 
in the University of Leyden

Translated by George Barker Jeffery and Wilfrid Perrett

From: Sidelights on Relativity (1922), pp.3-24, London: Methuen

German original: Äther und Relativitätstheorie (1920), Berlin: Springer

How does it come about that alongside of the idea of ponderable matter, which is derived by abstraction from everyday life, the physicists set the idea of the existence of another kind of matter, the ether? The explanation is probably to be sought in those phenomena which have given rise to the theory of action at a distance, and in the properties of light which have led to the undulatory theory. Let us devote a little while to the consideration of these two subjects.

Outside of physics we know nothing of action at a distance. When we try to connect cause and effect in the experiences which natural objects afford us, it seems at first as if there were no other mutual actions than those of immediate contact, e.g. the communication of motion by impact, push and pull, heating or inducing combustion by means of a flame, etc. It is true that even in everyday experience weight, which is in a sense action at a distance, plays a very important part. But since in daily experience the weight of bodies meets us as something constant, something not linked to any cause which is variable in time or place, we do not in everyday life speculate as to the cause of gravity, and therefore do not become conscious of its character as action at a distance. It was Newton’s theory of gravitation that first assigned a cause for gravity by interpreting it as action at a distance, proceeding from masses. Newton’s theory is probably the greatest stride ever made in the effort towards the causal nexus of natural phenomena. And yet this theory evoked a lively sense of discomfort among Newton’s contemporaries, because it seemed to be in conflict with the principle springing from the rest of experience, that there can be reciprocal action only through contact, and not through immediate action at a distance.

It is only with reluctance that man’s desire for knowledge endures a dualism of this kind. How was unity to be preserved in his comprehension of the forces of nature? Either by trying to look upon contact forces as being themselves distant forces which admittedly are observable only at a very small distance and this was the road which Newton’s followers, who were entirely under the spell of his doctrine, mostly preferred to take; or by assuming that the Newtonian action at a distance is only apparently immediate action at a distance, but in truth is conveyed by a medium permeating space, whether by movements or by elastic deformation of this medium. Thus the endeavour toward a unified view of the nature of forces leads to the hypothesis of an ether. This hypothesis, to be sure, did not at first bring with it any advance in the theory of gravitation or in physics generally, so that it became customary to treat Newton’s law of force as an axiom not further reducible. But the ether hypothesis was bound always to play some part in physical science, even if at first only a latent part.

When in the first half of the nineteenth century the far-reaching similarity was revealed which subsists between the properties of light and those of elastic waves in ponderable bodies, the ether hypothesis found fresh support. It appeared beyond question that light must be interpreted as a vibratory process in an elastic, inert medium filling up universal space. It also seemed to be a necessary consequence of the fact that light is capable of polarisation that this medium, the ether, must be of the nature of a solid body, because transverse waves are not possible in a fluid, but only in a solid. Thus the physicists were bound to arrive at the theory of the “quasi-rigid ” luminiferous ether, the parts of which can carry out no movements relatively to one another except the small movements of deformation which correspond to light-waves.

This theory — also called the theory of the stationary luminiferous ether — moreover found a strong support in an experiment which is also of fundamental importance in the special theory of relativity, the experiment of Fizeau, from which one was obliged to infer that the luminiferous ether does not take part in the movements of bodies. The phenomenon of aberration also favoured the theory of the quasi-rigid ether.

The development of the theory of electricity along the path opened up by Maxwell and Lorentz gave the development of our ideas concerning the ether quite a peculiar and unexpected turn. For Maxwell himself the ether indeed still had properties which were purely mechanical, although of a much more complicated kind than the mechanical properties of tangible solid bodies. But neither Maxwell nor his followers succeeded in elaborating a mechanical model for the ether which might furnish a satisfactory mechanical interpretation of Maxwell’s laws of the electro-magnetic field. The laws were clear and simple, the mechanical interpretations clumsy and contradictory. Almost imperceptibly the theoretical physicists adapted themselves to a situation which, from the standpoint of their mechanical programme, was very depressing. They were particularly influenced by the electro-dynamical investigations of Heinrich Hertz. For whereas they previously had required of a conclusive theory that it should content itself with the fundamental concepts which belong exclusively to mechanics (e.g. densities, velocities, deformations, stresses) they gradually accustomed themselves to admitting electric and magnetic force as fundamental concepts side by side with those of mechanics, without requiring a mechanical interpretation for them. Thus the purely mechanical view of nature was gradually abandoned. But this change led to a fundamental dualism which in the long-run was insupportable. A way of escape was now sought in the reverse direction, by reducing the principles of mechanics to those of electricity, and this especially as confidence in the strict validity of the equations of Newton’s mechanics was shaken by the experiments with β-rays and rapid kathode rays.

This dualism still confronts us in unextenuated form in the theory of Hertz, where matter appears not only as the bearer of velocities, kinetic energy, and mechanical pressures, but also as the bearer of electromagnetic fields. Since such fields also occur in vacuo — i.e. in free ether the ether — also appears as bearer of electromagnetic fields. The ether appears indistinguishable in its functions from ordinary matter. Within matter it takes part in the motion of matter and in empty space it has everywhere a velocity; so that the ether has a definitely assigned velocity throughout the whole of space. There is no fundamental difference between Hertz’s ether and ponderable matter (which in part subsists in the ether).

The Hertz theory suffered not only from the defect of ascribing to matter and ether, on the one hand mechanical states, and on the other hand electrical states, which do not stand in any conceivable relation to each other; it was also at variance with the result of Fizeau’s important experiment on the velocity of the propagation of light in moving fluids, and with other established experimental results.

Such was the state of things when H. A. Lorentz entered upon the scene. He brought theory into harmony with experience by means of a wonderful simplification of theoretical principles. He achieved this, the most important advance in the theory of electricity since Maxwell, by taking from ether its mechanical, and from matter its electromagnetic qualities. As in empty space, so too in the interior of material bodies, the ether, and not matter viewed atomistically, was exclusively the seat of electromagnetic fields. According to Lorentz the elementary particles of matter alone are capable of carrying out movements; their electromagnetic activity is entirely confined to the carrying of electric charges. Thus Lorentz succeeded in reducing all electromagnetic happenings to Maxwell’s equations for free space.

As to the mechanical nature of the Lorentzian ether, it may be said of it, in a somewhat playful spirit, that immobility is the only mechanical property of which it has not been deprived by H. A. Lorentz. It may be added that the whole change in the conception of the ether which the special theory of relativity brought about, consisted in taking away from the ether its last mechanical quality, namely, its immobility. How this is to be understood will forthwith be expounded.

The space-time theory and the kinematics of the special theory of relativity were modelled on the Maxwell-Lorentz theory of the electromagnetic field. This theory therefore satisfies the conditions of the special theory of relativity, but when viewed from the latter it acquires a novel aspect. For if K be a system of co-ordinates relatively to which the Lorentzian ether is at rest, the Maxwell-Lorentz equations are valid primarily with reference to K. But by the special theory of relativity the same equations without any change of meaning also hold in relation to any new system of co-ordinates K’ which is moving in uniform translation relatively to K. Now comes the anxious question: — Why must I in the theory distinguish the K system above all K’ systems, which are physically equivalent to it in all respects, by assuming that the ether is at rest relatively to the K system? For the theoretician such an asymmetry in the theoretical structure, with no corresponding asymmetry in the system of experience, is intolerable. If we assume the ether to be at rest relatively to K, but in motion relatively to K’, the physical equivalence of K and K’ seems to me from the logical standpoint, not indeed downright incorrect, but nevertheless unacceptable.

The next position which it was possible to take up in face of this state of things appeared to be the following. The ether does not exist at all. The electromagnetic fields are not states of a medium, and are not bound down to any bearer, but they are independent realities which are not reducible to anything else, exactly like the atoms of ponderable matter. This conception suggests itself the more readily as, according to Lorentz’s theory, electromagnetic radiation, like ponderable matter, brings impulse and energy with it, and as, according to the special theory of relativity, both matter and radiation are but special forms of distributed energy, ponderable mass losing its isolation and appearing as a special form of energy.

More careful reflection teaches us, however, that the special theory of relativity does not compel us to deny ether. We may assume the existence of an ether; only we must give up ascribing a definite state of motion to it, i.e. we must by abstraction take from it the last mechanical characteristic which Lorentz had still left it. We shall see later that this point of view, the conceivability of which I shall at once endeavour to make more intelligible by a somewhat halting comparison, is justified by the results of the general theory of relativity.

Think of waves on the surface of water. Here we can describe two entirely different things. Either we may observe how the undulatory surface forming the boundary between water and air alters in the course of time; or else — with the help of small floats, for instance — we can observe how the position of the separate particles of water alters in the course of time. If the existence of such floats for tracking the motion of the particles of a fluid were a fundamental impossibility in physics — if, in fact, nothing else whatever were observable than the shape of the space occupied by the water as it varies in time, we should have no ground for the assumption that water consists of movable particles. But all the same we could characterize it as a medium.

We have something like this in the electromagnetic field. For we may picture the field to ourselves as consisting of lines of force. If we wish to interpret these lines of force to ourselves as something material in the ordinary sense, we are tempted to interpret the dynamic processes as motions of these lines of force, such that each separate line of force is tracked through the course of time. It is well known, however, that this way of regarding the electromagnetic field leads to contradictions.

Generalizing we must say this: — There may be supposed to be extended physical objects to which the idea of motion cannot be applied. They may not be thought of as consisting of particles which allow themselves to be separately tracked through time. In Minkowski’s idiom this is expressed as follows: — Not every extended conformation in the four-dimensional world can be regarded as composed of world-threads. The special theory of relativity forbids us to assume the ether to consist of particles observable through time, but the hypothesis of ether in itself is not in conflict with the special theory of relativity. Only we must be on our guard against ascribing a state of motion to the ether.

Certainly, from the standpoint of the special theory of relativity, the ether hypothesis appears at first to be an empty hypothesis. In the equations of the electromagnetic field there occur, in addition to the densities of the electric charge, only the intensities of the field. The career of electromagnetic processes in vacua appears to be completely determined by these equations, uninfluenced by other physical quantities. The electromagnetic fields appear as ultimate, irreducible realities, and at first it seems superfluous to postulate a homogeneous, isotropic ether-medium, and to envisage electromagnetic fields as states of this medium.

But on the other hand there is a weighty argument to be adduced in favour of the ether hypothesis. To deny the ether is ultimately to assume that empty space has no physical qualities whatever. The fundamental facts of mechanics do not harmonize with this view. For the mechanical behaviour of a corporeal system hovering freely in empty space depends not only on relative positions (distances) and relative velocities, but also on its state of rotation, which physically may be taken as a characteristic not appertaining to the system in itself. In order to be able to look upon the rotation of the system, at least formally, as something real, Newton objectivises space. Since he classes his absolute space together with real things, for him rotation relative to an absolute space is also something real. Newton might no less well have called his absolute space “Ether”; what is essential is merely that besides observable objects, another thing, which is not perceptible, must be looked upon as real, to enable acceleration or rotation to be looked upon as something real.

It is true that Mach tried to avoid having to accept as real something which is not observable by endeavouring to substitute in mechanics a mean acceleration with reference to the totality of the masses in the universe in place of an acceleration with reference to absolute space. But inertial resistance opposed to relative acceleration of distant masses presupposes action at a distance; and as the modern physicist does not believe that he may accept this action at a distance, he comes back once more, if he follows Mach, to the ether, which has to serve as medium for the effects of inertia. But this conception of the ether to which we are led by Mach’s way of thinking differs essentially from the ether as conceived by Newton, by Fresnel, and by Lorentz. Mach’s ether not only conditions the behaviour of inert masses, but is also conditioned in its state by them.

Mach’s idea finds its full development in the ether of the general theory of relativity. According to this theory the metrical qualities of the continuum of space-time differ in the environment of different points of space-time, and are partly conditioned by the matter existing outside of the territory under consideration. This space-time variability of the reciprocal relations of the standards of space and time, or, perhaps, the recognition of the fact that “empty space” in its physical relation is neither homogeneous nor isotropic, compelling us to describe its state by ten functions (the gravitation potentials gμν), has, I think, finally disposed of the view that space is physically empty. But therewith the conception of the ether has again acquired an intelligible content, although this content differs widely from that of the ether of the mechanical undulatory theory of light. The ether of the general theory of relativity is a medium which is itself devoid of all mechanical and kinematical qualities, but helps to determine mechanical (and electromagnetic) events.

What is fundamentally new in the ether of the general theory of relativity as opposed to the ether of Lorentz consists in this, that the state of the former is at every place determined by connections with the matter and the state of the ether in neighbouring places, which are amenable to law in the form of differential equations; whereas the state of the Lorentzian ether in the absence of electromagnetic fields is conditioned by nothing outside itself, and is everywhere the same. The ether of the general theory of relativity is transmuted conceptually into the ether of Lorentz if we substitute constants for the functions of space which describe the former, disregarding the causes which condition its state. Thus we may also say, I think, that the ether of the general theory of relativity is the outcome of the Lorentzian ether, through relativation.

As to the part which the new ether is to play in the physics of the future we are not yet clear. We know that it determines the metrical relations in the space-time continuum, e.g. the configurative possibilities of solid bodies as well as the gravitational fields; but we do not know whether it has an essential share in the structure of the electrical elementary particles constituting matter. Nor do we know whether it is only in the proximity of ponderable masses that its structure differs essentially from that of the Lorentzian ether; whether the geometry of spaces of cosmic extent is approximately Euclidean. But we can assert by reason of the relativistic equations of gravitation that there must be a departure from Euclidean relations, with spaces of cosmic order of magnitude, if there exists a positive mean density, no matter how small, of the matter in the universe. In this case the universe must of necessity be spatially unbounded and of finite magnitude, its magnitude being determined by the value of that mean density.

If we consider the gravitational field and the electromagnetic field from the standpoint of the ether hypothesis, we find a remarkable difference between the two. There can be no space nor any part of space without gravitational potentials; for these confer upon space its metrical qualities, without which it cannot be imagined at all. The existence of the gravitational field is inseparably bound up with the existence of space. On the other hand a part of space may very well be imagined without an electromagnetic field; thus in contrast with the gravitational field, the electromagnetic field seems to be only secondarily linked to the ether, the formal nature of the electromagnetic field being as yet in no way determined by that of gravitational ether. From the present state of theory it looks as if the electromagnetic field, as opposed to the gravitational field, rests upon an entirely new formal motif, as though nature might just as well have endowed the gravitational ether with fields of quite another type, for example, with fields of a scalar potential, instead of fields of the electromagnetic type.

Since according to our present conceptions the elementary particles of matter are also, in their essence, nothing else than condensations of the electromagnetic field, our present view of the universe presents two realities which are completely separated from each other conceptually, although connected causally, namely, gravitational ether and electromagnetic field, or — as they might also be called — space and matter.

Of course it would be a great advance if we could succeed in comprehending the gravitational field and the electromagnetic field together as one unified conformation. Then for the first time the epoch of theoretical physics founded by Faraday and Maxwell would reach a satisfactory conclusion. The contrast between ether and matter would fade away, and, through the general theory of relativity, the whole of physics would become a complete system of thought, like geometry, kinematics, and the theory of gravitation. An exceedingly ingenious attempt in this direction has been made by the mathematician H. Weyl; but I do not believe that his theory will hold its ground in relation to reality. Further, in contemplating the immediate future of theoretical physics we ought not unconditionally to reject the possibility that the facts comprised in the quantum theory may set bounds to the field theory beyond which it cannot pass.

Recapitulating, we may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an ether. According to the general theory of relativity space without ether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and clocks), nor therefore any space-time intervals in the physical sense. But this ether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it.”

Scientific Theoretical Physicists

Physics author A. Zee is a Permanent Member of the Institute for Theoretical Physics and Professor of Theoretical Physics at the University of California, Santa Barbara. Professor A. Zee was invited to write an introduction to the new edition of Feynman’s classic book on quantum electrodynamics. Feynman’s QED: The Strange Theory of Light and Matter

A quote from the introduction:

“Theoretical physicists are a notoriously pragmatic lot. They will use whichever method is the easiest. There is none of the mathematicians’ petulant insistence on rigor and proof. Whatever works, man!

Given this attitude, you may ask, which of the three formalisms, Schrödinger, Heisenberg, and Dirac-Feynman, is the easiest? The answer depends on the problem. In treating atoms for example, as the master himself admits on page 100, the Feynman diagrams “for these atoms would involve so many straight and wiggly lines and they’d be a complete mess!”

The Schrödinger formalism is much easier by a long shot and that is what physicists use. In fact, for most “practical” problems the path integral formalism is almost hopelessly involved, and in some cases downright impossible. I once even asked Feynman about one of these apparently impossible cases and he had no answer. Yet beginning students using the Schrödinger formalism easily solve these apparently impossible cases!

Thus, which formalism is best really depends on the physics problem, so that theoretical physicists in one field, atomic physics for example, might favor one formalism, while those in another, high energy physics for example, might prefer another formalism.

Logically then, it may even happen that, as a given field evolves and develops, one formalism may emerge as more convenient than another.” – end quote

 

The Responsibly Imaginable

To Possibly Be

Imaginable    So Responsibly

Creatively See

Observational    The Reality

Hope of Theory

Occupational   A Visionary

Energize Plea

Survival         With Planetary

Space Faring

Quantum    LENR

Energy

 

gbgoble2013

FARING : intransitive verb

1. To get along

2. To go or happen

3. To travel; go.

4. To dine; eat.

Middle English faren, from Old English faran; akin to Old High German faran to go, Latin portare to carry, Greek peran to pass through, poros passage, journey.

First Known Use: before 12th century

 

Letter to Nature on Martin Fleischmann released

On August 3, 2012 Dr. Martin Fleischmann, co-discoverer of cold fusion, passed away in his home after a long illness.

Obituaries produced by mainstream news outlets were nothing more than gross distortions of career that exemplified intellectual honesty and integrity. The science journal Nature was but one publication that mischaracterized Fleischmann’s work where author Philip Ball wrote of cold fusion as a “pathological science”, and the “blot” it left on Fleischmann’s career.

Fortunately, Dr. Brian Josephson, a Cambridge University professor and Nobel laureate, responded to Nature’s portrayal with a letter published in Nature Correspondence. Because of licensing arrangements, the text has only recently become available to non-subscribers, and is reproduced here.

Here is Brian Josephson’s letter to Nature magazine:

Cold fusion: Fleischmann denied due credit
Brian D. Josephson

From Nature 490, 37 (04 October 2012)
doi:10.1038/490037c
Original online publication at nature.com, 03 October 2012
Philip Ball’s obituary of Martin Fleischmann (Nature 489, 34; 2012), like many others, ignores the experimental evidence contradicting the view that cold fusion is ‘pathological science’ (see www.lenr.org). I gave an alternative perspective in my obituary of Fleischmann in The Guardian (see go.nature.com/rzukfz), describing what I believe to be the true nature of what Ball calls a “Shakespearean tragedy”.

The situation at the time of the announcement of cold fusion was confused because of errors in the nuclear measurements (neither Fleischmann nor his co-worker Stanley Pons had expertise in this area) and because of the difficulty researchers had with replication. Such problems are not unusual in materials science. Some were able, I contend, to get the experiment to work (for example, M. C. H. McKubre et al. J. Electroanal. Chem. 368, 55–56; 1994; E. Storms and C. L. Talcott Fusion Technol. 17, 680; 1990) and, in my view, to confirm both excess heat and nuclear products.

Skepticism also arose because the amount of nuclear radiation observed was very low compared with that expected from the claimed levels of excess heat. But it could be argued that the experiments never excluded the possibility that the liberated energy might be taken up directly by the metal lattice within which the hydrogen molecules were absorbed.

In my opinion, none of this would have mattered had journal editors not responded to this skepticism, or to emotive condemnation of the experimenters, by setting an unusually high bar for publication of papers on cold fusion. This meant that most scientists were denied a view of the accumulating positive evidence.

The result? Fleischmann was effectively denied the credit due to him, and doomed to become the tragic figure in Ball’s account.

For more, see Brian Josephson’s Link of the Day archive.

Related Links

New energy solution from Nobel laureate ignored at NY Times April 7, 2013

Brian Josephson safeguards historic contribution of Martin Fleischmann October 6, 2012

Martin Fleischmann leaves brilliant legacy of courage in pursuit of truth August 4, 2012

Top