Tom Whipple of Falls Church News-Press on Great Transition

Former senior analyst for the Central Intelligence Agency (CIA) Tom Whipple is a writer/editor on energy, Peak Oil, and LENR.

This is a re-post of Tom Whipple’s The Great Transition: Progress on New Sources of Energy published in Falls Church News-Press at https://fcnp.com/2018/12/20/great-transition-progress-new-sources-energy/.

The Great Transition: Progress on New Sources of Energy

by Tom Whipple

Unless humanity replaces fossil fuels in the next couple of decades, it is almost certain that the latter part of the 21st century and beyond is going to be a very unpleasant era in which to live. For the past 200 years, much of the world has prospered greatly from fossil fuels. Most of us have become so accustomed to the benefits of fossil fuels that few are anxious to give up the lifestyles that this energy has provided despite the dire implications for future generations.

After three decades of grappling with climate change, it is becoming apparent that the only solution to slowing and reversing its effects is to develop new sources of energy that are so much cheaper than our fossil fuels and our current alternatives that a rapid transition to non-polluting energy will happen quickly and without too much economic damage. Although considerable progress has been made in improving and reducing the cost of our current, non-carbon emitting energy sources, for a variety of reasons not enough progress is being made in substituting these alternative energy sources to stop catastrophic changes in our climate.

At present, there seem to be only two radically new sources of energy under development that offer hope of replacing fossil fuels soon. As I have discussed several times before in this paper, there are two technologies — Low Energy Nuclear Reactions LENR and hydrogen/hydrino reaction — under development that appear to be nearing commercialization. Both of these technologies have been scientifically controversial for many years, but as their developers make progress, skepticism among those who have insight into the progress to these technologies is starting to wane.

The most prominent developer of the LENR technology, Andrea Rossi, said recently that he is installing a LENR heating system in a factory and that the first phase of this system has been in operation since mid-November. Rossi, however, releases information about his technology in such small bits and pieces that it is difficult to evaluate his technology or its prospects.

In contrast to the secretive Rossi, Randell Mills of Brilliant Light Power is an open book. For years, Mills has posted on his website periodic briefings outlining his progress and plans for the future. In recent years he has been issuing quarterly progress reports which are supplemented by the release of annotated video clips showing steadily improving prototypes of his devices being tested. In contrast to Rossi, some 95 percent of Mills’ technology and progress is available to anyone interested on the Brilliant Light Power website.

Mills has been working on his technology for over 25 years, and his laboratory is adequately financed by investors who believe he is developing a revolutionary technology. Mills produces energy by converting hydrogen atoms into a hitherto unknown form of hydrogen, which he calls hydrinos, which results in the release of unprecedented amounts of energy. His reaction has been working for several years and seems to be well verified by outside scientists. However, a reaction on a laboratory bench is not the same as a device that can replace all types of fossil fuels worldwide. There is still a lot of engineering to do before a plasma glowing on a laboratory bench is ready for mass production.

It has been two years since Mills last demonstrated his hydrogen-to-hydrino reaction and laid out a plan to build and market an energy producing device he calls a SunCell. During this period there have been important changes in Mills’ concept of how a commercial device that will reliably produce heat and electricity will work. Plans to release a device that would convert the energy being produced by a high-temperature plasma into electricity by using photoelectric cells has been put aside in favor of more promising techniques. Mills is now planning to develop two devices, one to produce heat and the other to produce electricity, using a highly efficient technique known as magnetohydrodynamics (MHD).

Before a commercial energy producing device can be built, Mills first has had to develop what he calls an “automated cell” or subsystem in which the energy-producing reaction can take place under computer control. In the early prototypes, Mills’ reaction was started and maintained manually, making it unsuitable for a commercial product. Judging from the videos showing various configurations of the SunCell that have been tested and the quarterly reports that have been released, he seems to be making progress. Successful development of several subsystems for the automated cell has been announced, and the videos show the reaction can now take place inside various types of enclosed spheres.

The two commercial products under development that will incorporate the automated cell are the “Thermal SunCell” which is to deliver 500kW for boilers, hot air or hot water thermal systems. As this device is far less complex than the “Electric SunCell,” it should reach the market first and demonstrate the potential of the technology. Brilliant Light Power plans to market this device initially to industrial firms which use heat in their processes. Although Mills says the SunCell theoretically can be scaled to produce anywhere from 10 kilowatts to 10 megawatts, the first device which incorporates an MHD subsystem is being designed to produce 150kW. By using MHD rather than photovoltaics to produce the electricity, Brilliant Light has lengthened the development time but, in the end, may have a better and far cheaper device.

With the changes taking place in plans for a commercial system, the path to non-polluting cheap energy from the SunCell technology has been lengthened, and BLP is no longer making forecasts of how long it will be before even a commercial-ready prototype can be developed. There was one clue in a recent BLP video of “Shakedown testing of our inverted-pedestal-electrode reactor before our planned demonstration for DOD scientists.” This could be a very significant development for if BLP can convince DOD scientists that they are looking at the energy source of the future, the technology could be in production a lot faster. It was scientists from DoD’s Advanced Research Projects Agency that was instrumental in developing the Internet — and look how that turned out! There may be some hope for the 22nd century yet if Rossi’s or Mills’ devices get into production in time.

From The Great Transition: Progress on New Sources of Energy by Tom Whipple

Top