Pamela Mosier-Boss on the Cold Fusion Now! podcast

The sixteenth episode of the Cold Fusion Now! podcast features Dr. Pamela Mosier-Boss, an analytical chemist who spent a career working at the Navy’s SPAWAR laboratory developing environmental sensors and working on LENR.

As an experimentalist, Dr. Mosier-Boss used the co-deposition method, pioneered with her partner in the lab Dr. Stanislaw Szpak to reveal nuclear effects and an at- or near-surface reaction.

Tiny craters indicating mini-explosions on the surface of the cathode, video of real-time heat-producing flashes, neutrons and alpha particles detected by CR-39 are just some of the published work generated since 1989.

Dr. Boss and her colleagues presented at ICCF-21 proposing LENR-generated neutrons to fission uranium, eliminating the need for radioactive neutron source.

Pamela Mosier-Boss speaks on these topics as well as her career as one of the few woman in the CMNS field, and what needs to happen next to solve the LENR reaction mystery.

Listen to the Cold Fusion Now! podcast with Ruby Carat and special guest Dr. Pamela Mosier-Boss at https://coldfusionnow.org/cfnpodcast/ or subscribe in iTunes.


Big atomic THANKS to our new and continuing supporters. We are making it happen for a breakthrough energy future because of you. Go to our website at coldfusionnow.org/sponsors/ to be a Cold Fusion Now! SuSteamer or sign-up on Patreon.

Patreon is a platform for supporting creators. You can pledge as little as a dollar per episode and cap your monthly spending. When we deliver, you reward the work!

Visit us on Patreon to sign-up and become a Patron!

 


Winning LENR essay published in Navy magazine

A Navy essay contest has landed a LENR article with second prize and featured in the September 2018 issue of U.S. Naval Institute Proceedings magazine (members only content online –.pdf here).

 

Low Energy Nuclear Reactions: A Potential New Source of Energy to Facilitate Emergent/Disruptive Technologies [.pdf] by Michael Ravnitzky was the second place winner in The Emerging & Disruptive Technologies Essay Contest sponsored by the U.S. Naval Institute, cosponsored with Leidos Corporation.

Michael Ravnitzky is the Editor of Steven Krivit’s three volumes on the history of LENR, with its unfortunate repudiation of the name “cold fusion”, largely by belief in a specific theoretical model of the reaction focusing on electro-weak interactions.

Sadly, the idea is yet unconfirmed, and just one of a half-dozen contenders for theoretical models, none of which can name a recipe to create and scale the reaction.

Nevertheless, Ravnitzky makes a strong case to the Navy for LENR technology, who utilized nuclear power on submarines early on, and need safe and clean solutions to power generation, just like everybody else.

Read The Emerging & Disruptive Technologies Essay Contest second-place winner by Michael Ravnitzky Low Energy Nuclear Reactions: A Potential New Source of Energy to Facilitate Emergent/Disruptive Technologies [.pdf]


Melvin Miles on the Cold Fusion Now! podcast

Dr. Melvin Miles is the guest on the Cold Fusion Now! podcast with Ruby Carat episode 12. Dr. Miles is an electro-chemist and LENR experimentalist who in 1990 discovered a relationship between the heat production in cold fusion cells with the production of helium, confirming the nuclear nature of the elusive reaction.

He spent two years at Dixie College (now Dixie State University), then received a Bachelor’s degree at Brigham Young University and a Ph.D at the University of Utah in Physical Chemistry, minoring in Physics. Following his degree, he was awarded a NATO fellowship to work as a postdoc for one year with Dr. Heinz Gerischer in Munich, Germany.

Melvin Miles was a Navy electro-chemist specializing in batteries at the China Lake research lab in 1989 when the cold fusion announcement occurred. He had difficulty reproducing the Fleischmann-Pons Heat Effect – until September of 1989. He reported the result to the Department of Energy DoE, then writing a report on the phenomenon, yet the November 1989 DoE has Dr. Miles listed as a negative on reproduction, as they refused to change their record of his response. He went on to measure helium as a nuclear product from active cold fusion cells producing excess heat in 1990.

D. Miles has challenged the American Chemical Society’s The Journal of Physical Chemistry ban on publishing cold fusion papers by proposing several mainstream referees to review one of his papers.

He has also published a collection of Letters from Martin Fleischmann to Melvin Miles, documenting sixteen years of collaboration between himself and Martin Fleischmann, who along with Stanley Pons, discovered the Anomalous Excess Heat Effect known as cold fusion.

Listen to episode 12 with Melvin Miles and host Ruby Carat at our podcast page https://coldfusionnow.org/cfnpodcast/ or subscribe in iTunes.

Patreon supports creators like us, and we need you to join in. Go to our homepage on Patreon https://www.patreon.com/coldfusionnow and pledge your support. Just a few dollars brings the voices of breakthrough energy research to world attention.

Thank you for taking your valuable time to listen to the true stories of cold fusion/LENR pioneers whose stories were silenced and banned from mainstream, and only now can be heard. Take the next step and talk to your friends, talk to your family about something new going down. We can mindfully choose to step away from dirty, old ways, and towards a green technological future with enough resources for everybody. Become a Patron!

 





Live Long and Prosper – Cold Fusion Now!

Title graphic: Cold Fusion Then – Cold Fusion Now!.

It was twenty-six years ago today that the world learned of a new form of energy that promised a green technological future for all life on Earth.

Twenty-six years later, we can’t yet buy a reactor in Home Depot, but prototypes are multiplying in independent labs.

We don’t yet have university labs training a new generation of scientists, but young entrepreneurs are self-organizing around open-science principles.

The ground is formed, and a figure emerging. A critical mass of awareness has occurred.

Could a man like Bill Gates ignore what he was told one day last fall?

And where would the most powerful man in the world go to get the real deal on the scientific question of our time?

The Department of Energy? Oh do not be cruel.

Dr. Robert Duncan at ICCF-18.
Dr. Robert Duncan at ICCF-18.
Dr. Robert Duncan, former Vice Chancellor of Research at University of Missouri, was key in creating the Sidney Kimmel Institute of Nuclear Renaissance (SKINR), now directed by Dr. Graham Hubler, formerly of Naval Research Lab.

Watch Graham Hubler’s SKINR Overview from ICCF-18.

Slide from Graham Hubler's SKINR Overview at ICCF-18
Slide from Graham Hubler’s SKINR Overview at ICCF-18

Now Dr. Duncan is at Texas Tech University as Senior Vice President for Research, where he is Founder and Director for the Center for Emerging Energy Sciences (CEES). From the Texas Tech University Board of Regents Agenda Book for the meeting December 11-12, 2014 [.pdf], CEES will study the Anomalous Heat Effect (AHE), one of the many names for cold fusion that emphasizes the mysterious and as-yet-unknown reaction that creates fusion-sized heat from small, table-top reactors.

According to Texas Tech, total research expenditures topped $140 million in 2012. What portion will go to CEES? Even 1% would be a welcome change, but not enough to do what CEES wants: to discover the nature of the reaction, and engineer a technology.

They will partner with ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development and contract with a scientist “soon to retire” from SRI International. These two institutions are experienced in the field of condensed matter nuclear science, publishing major results over twenty-six years of research.

Dr. Vittorio Violanted at ICCF-18
Dr. Vittorio Violante of ENEA at ICCF-18
Director of Energy Research at SRI International is Dr. Michael McKubre, whose lab dream team has reproduced results such as the correlation of excess heat from cells that use a fuel of deuterium with the amount of helium produced. ENEA’s early experiments probed the properties of materials. Led by Dr. Vittorio Violante, the lab has worked the SRI regularly for the past two-and-a-half decades to produce unique metallic hydrides used in the numerous ground-breaking experiments. He briefed Bill Gates and friends last November.

The complete service environment for a new energy technology is now in place. We have the metal, we have the water, and we have a desperately broken global economy ready for re-tooling.

Alliances are forming. How will the LENR community respond?

Cold fusion scientists, so used to being ignored, now expect to be ignored. They are as ill-prepared today for the onslaught of attention as Drs. Martin Fleischmann and Stanley Pons were twenty-six years ago when the two quiet researchers emerged from their basement lab to tell what they had found, and were crushed by the satellite environment invading their every beaker.

Since then, the International Society for Condensed Matter Nuclear Science should have had CNN covering their conferences, but most of the time, they had NO ONE. When someone was there, it wasn’t Anderson Cooper, it was Infinite Energy Magazine, and sometimes, those scalawags from Cold Fusion Now.

When the Gates Foundation does makes their move (and how could they not?), will the second tier of capitalists start jumping in? Will CNBC start sending professional crews for sit-downs with real video equipment – and lights?! You betcha!

And where will the press go to for clear information? How do you start to investigate a story that has been hiding in plain sight for two-and-a-half-decades?

Well, er, I am available as of this morning to design and manage any public relations campaign, so please do call.

What will you get?

Hmmm…

UPDATE on Cold Fusion Now Actions

I have little time to blog anymore.
The poor Cold Fusion Now website is neglected and in disarray. (Wanna help re-design? Email me!)
My activity hasn’t stopped…

Last fall, I was on our local TV news surreptitiously holding two cold fusion books, Developments in Electrochemistry Science Inspired by Martin Fleischmann and The Explanation of Low Energy Nuclear Reaction, as I talked about the upcoming Science Night at our community college.

More recently, our little town’s tribute to Leonard Nimoy, simply called Spock Day, brought the news cameras out, and they caught a little promo I always bring with me. Notice the Cold Fusion Now sticker in the corner?! How about the new Hydrogen coasters on the bar? Check out these photos snapped off the TV:

Geek girl Ruby Carat with KIEM News' Steve King, and Astronomer John Pedicino.
Geek girl Ruby Carat, KIEM News Steve King, and Astronomer John Pedicino.
KIEM-TV's Brad Curtis with partial CFN sticker
KIEM-TV’s Brad Curtis photographed on TV with partial CFN sticker

 

 

Hydrogen atom coasters on the bar at Spock Day
Hydrogen atom coasters on the bar at Spock Day courtesy Cold Fusion Now!
Spock and CFN on TV together!
Spock and CFN on TV together!

 
 
All lots of fun, but is it really making a difference?

YES!

While cartoons of hydrogen atoms, and running around leaving coasters on bars may seem like a joke to the serious-minded, (and I’ve gotten the “disgruntled” mail to prove it!) I believe that every act of advocacy is worthwhile, and has the potential to change one life, or a billion lives.

Any moment, a teaching moment!

In a recent algebra class, I was demonstrating properties of polynomial functions. I brought up Making Sense of Alumina Spectral Emissivity, a new paper by Bob Higgins on his deep-dive into the thermal imaging of the nickel-hydrogen “dog-bone” reactors. It is an excellent introductory article to the sticky issues in thermal measurement. In the paper is the equation for radiant power emitted from a blackbody as proportional to the temperature of the body to the fourth power, M = εσ T4.

As I started to talk about how coefficients scale a function, and in particular how the emissivity effects the radiant power in this equation, several students brought up Andrea Rossi and the E-Cat – more than ever before! I was able to answer some questions, putting people on the path to reason, instead of reaction. Who knows what that will be inspired in the minds of creative youth?

Dr. Melvin Miles at SPAWAR
Dr. Melvin Miles at SPAWAR
New movie finished; waiting for release!

Even more fun was the trip to San Diego this past January to interview Navy scientists on their work in cold fusion research.

Altogether, I filmed a total of five hours video interviews with Dr. Stanislaw Szpak, Dr. Frank Gordon, both from the SPAWAR lab, and Dr. Melvin Miles, from the China Lake Research lab. I have finished editing a first movie from those interviews, and I’ve already started on a second.

It’s important to have these scientists who’ve worked so long alone to tell their own story. Cold fusion has a complicated history, with a complicated science, and complicated people. As it moves to the mainstream, and information begins to dissipate through the feeds, a need for simplicity will distort the truth of the real events as they happened.

If the people who lived it don’t tell their story, someone else will. The LENR community must shape the story of what happened when one of the greatest discoveries of all time was kept from the world. It is important for the integrity of those who suffered the consequences; the intrepid researchers must be recognized, and the rest of us deserve a clean-energy future.

Hep the elite to what’s going down!

Dr. Melvin Miles visiting Caltech January 2015.
Dr. Melvin Miles visiting Caltech January 2015.
I had picked up Dr. Miles for the trip to San Diego, and on the way back, we stopped in Pasadena, California at the campus of Caltech for a little advocacy. Dr. Miles and I dropped off copies of the chapter on cold fusion from Developments in Electrochemistry Science Inspired by Martin Fleischmann to a few key Caltech faculty. Written by Dr. Miles and Dr. Michael McKubre of SRI International, the chapters were distributed in mailboxes to such luminaries as David Goodstein and Nate Lewis. We were able to hand one personally to Dr. Harry Gray, an eminent researcher who Miles had met years ago at another college.

Walking into Dr. Gray’s office, he was open to meeting us, and surprised at the activity in the LENR field. He remarked, “I’ve got a lot of catching up to do.”

Postcard for LENR book on Caltech bulletin board.
Postcard for LENR book on Caltech bulletin board.
I also put Cold Fusion Now stickers and postcards for Dr. Edmund StormsThe Explanation of Low Energy Nuclear Reaction on lots of Caltech bulletin boards, knowing many students will see them, and not be as closed-minded as their professors.

 

 

 

Rocket scientists always get the latest

Postcards, stickers, and magnets were left at Voyager Airport Restaraunt.
Postcards, stickers, and magnets were left at Voyager Airport Restaurant.
Always a stop on my travels, the Mojave Spaceport got another dose of news when I dropped off stickers, postcards, and calendar magnets to Virgin Galactic‘s office there and the cafe where all the rocket scientists eat lunch.

I left a serious wad of materials on the way down to San Diego (I asked permission, and the gal said “Oh yeah, we’re always happy to have more stuff to look at”), and when I came back through a week later, they were all gone, so I laid more down.

The Cold Fusion Now calendar magnet was still on the soda machine. Yah!

Cold Fusion Now calendar magnet sits at Mojave Spaceport soda machine!
Cold Fusion Now calendar magnet sits at Mojave Spaceport soda machine!

Got a ticket for the ride of your life?

We have only to look back at the early publications of Infinite Energy Magazine, started by Eugene Mallove and Jed Rothwell, to see what lies ahead: an explosion of interest, and businesses popping up like clover. I get dizzy thinking about the speed at which this nascent technology will sweep the planet – and I can’t wait!

For twenty-six years, the world has been moments away from breakthrough. We don’t have to wait much longer. We will have a second chance at designing living arrangements for all the life on our planet – and we can begin now!

All in all, the lack of activity on the Cold Fusion Now website is only because we are taking our activism to a new level. I do want to sincerely apologize to everyone I have not written back this past year. Your messages are important to me, and give me a boost when I really need it. I thank you and am grateful for your support. With two p-t jobs and a mortgage, I haven’t been able to respond in a timely manner. I will do better.

There is much more activity going on, but it’s still premature to tell the details.
Like, did I ever tell you about the time …

MM-Mexico-640x360

..Aiy yai yai!

LIVE LONG AND PROSPER!

Ruby at Spock Day: "The good of the many outweighs the good of the few!"
Ruby at Spock Day: “The good of the many outweighs the good of the few!”

COLD FUSION NOW!

Transmutation of Nuclear Waste – LENR SPAWAR Navy Patent

THE TRANSMUTATION OF NUCLEAR WASTE

The nuclear waste problem is totally unresolved. There are no sites, no containers and no places on earth which can safely contain radioactive waste materials. No container will outlive the radioactivity of its contents. Areas contaminated with radioactive waste are uninhabitable for the lifetime of their radioactive contents, which can amount to half a million years. Unless a process for transmuting radioactive wastes is developed, the best that we can hope for is above ground disposal sites managed by responsible people with valid monitoring systems. It is impossible to monitor radioactive waste that has been dumped into our rivers or the ocean, buried in the ground or shot into space.

What kind of legacy are we leaving our children and their children?

Is their hope?

INTRODUCTION

This article addresses nuclear waste contamination from ionizing radiation, the kind produced by nuclear plants, nuclear tests, medical procedures, food irradiators, facilities that sterilize via the use of radiation, and research facilities using radioactive isotopes.

There are at least 110 nuclear reactors in the United States. Currently, they generate 3,000 tons of nuclear waste each year. Well over 22,000 tons have already accumulated, according to a May 11, 1993 USA Today article on the nuclear waste crisis. Today (1997), this has increased to 34,000 tons. This waste would fill a football field nine feet deep.

This tonnage does not include low-level wastes – materials that come in contact with radioactive substances. These wastes, such as gloves, filters, tools and clothing, come from nuclear power plants, hospitals and research centers that use radioactive substances. There are 100,000 U.S. facilities that use these materials. They produce 1.6 million cubic feet of low-level wastes each year.

Describing the contamination of earth by radiation as “low-level ionizing radiation” is misleading and implies that it is insignificant. It’s not.

Low-level ionizing radiation means 5-15 rems (similar to a red) or about what we all get each year if we don’t work in a nuclear plant. Dr. John Gofman, a pioneer on the health effects of ionizing radiation, calls this the doubling dose, the dose required to double the cancer rate.

More worrisome is Dr. Abram Petkau’s observation that it takes only 700 millirads of protracted radiation (from external or internal sources) to Iyse (break) the cell membrane. By protracted, I mean over a period of time, instead of all at once. In the absence of antioxidant enzyme protection, such as superoxide dismutase and catalase, a mere 10-20 millirads were required to destroy the cell membrane. P.S., we’re all deficient in antioxidant enzymes because there’s much more radiation-induced free radical damage than nature intended, thanks to the nuclear industry.

There has been no viable solution to the nuclear waste disposal problem. It is the greatest of all disposal problems, and not just because of clean-up costs. Radioactive waste sites are virtually uninhabitable for the lifetime of the radioactive materials contained, which can amount to thousands of years. There are no containers which will last as long as the radioactive materials stored in them, thereby promising leakage of the radioactivity into the water, soil and air.

The U.S. government and the Department of Energy (DOE) are faced with enormous volumes of radioactive waste, with no solution of how to store them.

An April 8, 1992 article in The Arizona Republic reported the results of an eight-month study by the Environmental Protection Agency on radioactive sites in the United States. The EPA designated 45,361 locations, including factories and hospitals, with nuclear waste contamination ranging from slight to severe.

COSTS OF THE NUCLEAR INDUSTRY

Despite a one-half-trillion dollar subsidy to the nuclear power and weapons industry over the last 40 years, nuclear power is a dismal economic failure and a safety nightmare. Here are some examples to illustrate the severity of these problems, both financial and safety.

On July 4, 1990, the DOE estimated costs for nuclear cleanup to be $31 billion over the following five years. This figure represents a 50% increase over 1989 projections. In 1991, DOE revised this estimate to $100 billion.

During the last 10 years the nuclear industry and the federal government have spent $6 billion on a plan to store 77,000 metric tons of radioactive waste in tunnels bored into the granite bedrock of Yucca Mountain, Nevada. The San Jose Mercury News reported on July 14, 1992 that a June earthquake caused $ 1 million in damage to a Department of Energy building six miles from the proposed Yucca Mountain, Nevada Site. (The San Jose Mercury News reported on July 14, 1992 that a June earthquake caused $1 million in damage to a Department of Energy building six miles from the proposed Yucca Mountain site). DOE scientists were rattled to discover that the epicenter of the quake was 12 miles from the proposed dump site.

In 1991, mining experts reported that a deep underground salt chamber in the New Mexico desert designated for the first U.S. tests of permanent radioactive waste disposal would probably collapse years before the tests could be completed. The $800 million DOE nuclear- waste disposal project was already years behind schedule when this ominous proection was made (June 14, 1991, The Arizona Republic).

WHERE DOES THE WASTE GO?

Nuclear waste has been dumped into oceans, rivers and lakes, and into the ground. Leaking containers of radioactive wastes add to this on a daily basis, endangering the earth’s groundwater. There is no permanent storage site that is free from the hazards of radioactive waste.

The following examples are given to indicate the serious and unsolved nature of the nuclear waste crisis.

Port Granby, Canada dump site: Port Granby, east of Oshawa, Canada, is one of three landfills in the Port Hope area storing radioactive waste from a nearby uranium processing plant. Over 40 years, more than half-a-million tons of radioactive waste was buried in 122 14- foot pits in the Port Granby dump. Years of public outcry forced the closing of the dump in 1988. Despite efforts to capture the seepage, radioactive groundwater from this site makes its way down the bluffs, where the current carries it towards Toronto. A greater fear is the cliff sides that are eroding. One day, the bluffs will send chunks of the dump site crashing into the water. Currendy, anti-dump activists debate with nuclear officials over the perilous dump site, with no solution at hand. (New Magazine, Toronto, March 1993).

Russian Dumping: On September 2, 3, and 4, 1992, the Los Angeles Times reported on “The Soviets’ Deadly Nuclear Legacy”. From 1966 to 1991, the Russians dumped nuclear wastes into rivers, lakes and into the ocean. Russia’s deadly atomic legacy is just now coming to light in a report issued in March 1993 by Russian President Boris Yeltsin. From 1949 to 1956, nuclear waste from plutonium refining was dumped into the Techa River, even though radioactivity began showing up 1000 miles downstream in 1953. Today, gamma radiation on the river bank measures 100-times normal levels. Aware of the radioactivity in the Techa, Russian workers began dumping into Lake Karachai. Today, “to stand on its bank, even for a short time, would be deadly,” according to Mira Kosenko, M.D., of the Chelyabinsk Institute of Physics and Biology.

The Russians dumped at least 15 used nuclear reactors including six submarine units containing uranium fuel into the Kara Sea. According to Andrei Zolotkov, a radiation safety engineer, the entire hull section of the obsolete nuclear powered icebreaker V.1. was cut out with blowtorches and sunk. The irradiated mass measured 65 by 65 by 35 feet, or as high as a five-story building. The results of this are now evident. Officials at the Northern Division of the Polar Institute of Fish and Oceanography in Arkhangelsk report that thousands of seals are dying of cancer. This was caused by radioactive pollution of the seabed plus fallout from Russian nuclear tests on Novaya Zemyla, the archipelago where the seals live.

Rocky Flats Nuclear Weapons Plant, Colorado: On March 26,1992, Rockwell Intemational Corporation, operator of the Rocky Flats plant pleaded guilty to criminal violations of hazardous-waste laws and the illegal discharging of radioactive wastes into two streams that feed water supplies serving four Colorado Cities. The government fined Rockwell $20 million and selected EG&G Inc. as the new plant operator (Thursday, March 26, 1992, The Arizona Republic).

The Hanford crisis: A new EPA analysis revealed that Hanford workers dumped millions of gallons of radioactive waste into the ground. Some of the wastes were injected deep into the earth, while others were dumped into open trenches or ponds which were later covered with dirt. These wastes contain two long lived carcinogens, technetium 99 and iodine 129. Technetium 99 has a half-life of 212,000 years and iodine 129 a half-life of 16 million years. Because Hanford is located close to the Columbia River, radioactive isotopes continue to flow into the river.

In addition, storage tanks at Hanford are in danger of exploding due to continuous production of extremely reactive, labile products. This serious situation is described below.

CURRENT LEGAL METHODS OF NUCLEAR WASTE STORAGE

There are two storage methods.

The most common is to store the radioactive waste in wafer pools made of reinforced concrete six feet thick lined with stainless steel. The second method is to store the material in dry casks which are transported by rail, ,truck or barge to outdoor storage sites where they are placed on 3-foot reinforced concrete pads.

CURRENT DUMP SITES

The 1980 plan for waste storage has unraveled. In this plan, the federal government would be responsible for high-level waste and states would take responsibility for low-level wastes. States could build their own waste sites or form compacts with other states to share common repositories. However, states encountered massive opposition when possible locations were chosen. The problem is unsolved.

The only two current disposal sites, in Richland, Washington and Barnwell, South Carolina, are nearing capacity and will have to shut down. Wastes not allowed to go there are piling up in makeshift storage facilities across the United States. Currently, there are more than 100 makeshift sites in 41 states where nuclear waste is being stored in cooling pools. Many of these sites are in developing areas and some are near businesses, residential areas and schools.

The fight over dump sites continues. As of Tuesday, April 1997, the Senate voted (65-34) to establish a temporary central storage facility for the nation’s 33,000 tons of nuclear waste at Yucca Mountain, northwest of Las Vegas. President Clinton is expected to veto it. If he does, the question of what to do with nuclear garbage will remain unanswered.

Opponents emphasize the danger of transporting hazardous nuclear waste through populated areas by rail or highways and believe that a temporary site in Nevada will lead to a permanent facility there.

This temporary site would be above ground but there is a proposed permanent storage location underground in the same area. This proposal is fraught with controversy. The DOE says that four more years of study are needed before making a final decision. Why? An earthquake of 5.9 magnitude on the Richter scale occurred on June 29, 1992 just six miles from the proposed burial site. Since then, federal officials have had major problems convincing people that nothing can go wrong at their proposed nuclear dump sight. Senator Richard Bryan (Democrat Nevada) said of this quake, “Mother Nature delivered a wake-up call to America’s policy-makers. Placing … high-level radioactive nuclear waste in an active earthquake zone defies common sense.” (San Jose Mercury News, Tuesday, July 14, 1992).

Most people are unaware of how grim it is to have 33,000 tons of radioactive garbage which will take from 30 to 480,000 years to decay to a harmless substance. However, the government knows.

That’s why their policy says that radioactive waste must be stored at least 10,000 years, even though this is hardly realistic. Let me explain. The range of half-lives of these materials varies from 24 seconds to nearly 15.9 million years.

The half-life of a radioactive element is the time it takes it to decay to one-half of its mass. The whole lifetime of a radioactive element is its half-life times 20 years. This makes the situation grim. For example, the half-life of Strontium 90 is 28 years. Multiplying this by 20 gives you a life time of 560 years. For Plutonium 239 with its half-life of 24,000 years, has a whole-life of 20 X 24,000 or 480,000 years. Cesium 137 with its half-life of 30 years will hang around for 600 years.

“Do not be surprised if you learn that the nuclear industry makes billions of dollars by being a part of government’s policy of burial of nuclear wastes. It is not in their financial interest to try any other process. They are not idealists. ” Radha R. Roy, Ph.D. Professor Emeritus

WHAT’S WRONG WITH STORING NUCLEAR WASTE ABOVE THE GROUND?

Although above-ground storage has the advantage of access to being monitored, it is still not without unsolved dangers. Nuclear waste is highly unstable and reactive. For exarnple, at Hanford, Washington, radioactive wastes were stored in million-gallon tanks while awaiting a permanent (?) storage site (lots of Luck!). These tanks contain plutonium wastes and organic materials. Chemicals in the tanks break down, producing hydrogen gas, increasing pressure inside the tanks. This lays the conditions for an explosion, which would spread contaminants into the atmosphere, the land and the water, not to mention the people and the animals.

In 1957, similar waste storage tanks exploded at the Russian Mayak plutonium plant and contaminated hundreds of square miles in the southern Ural mountains. According to a Thursday, January 28, 1993 Washington Post article, this explosion released two million curies over a huge territory, leading to the resettlement of 10,700 people. This disaster caused thousands of casualties.

Now it is 1993. In April, several newspapers reported that yet another tank of radioactive waste exploded at a weapons plant in the secret Siberian city of Tomsk-7. This explosion contaminated 2,500 acres and exposed firefighters to dangerous levels of radiation. Tomsk-7 is believed to be about 12 miles outside Tomsk, a city of half-million people. Since Tomsk-7 is secret, it is not on ordinary maps (The Arizona Republic, April 7; The Washington Post, April 8, 14; The Register-Guard, Eugene, Oregon, April 7, 8, 1993).

WHAT’S WRONG WITH STORING NUCLEAR WASTE BELOW THE GROUND?

Only two problems: #1, there is no material that will outlast its radioactive contents; #2, radioactive wastes are so active that their contents continuously produce heat, hydrogen gas and other labile products. Who will monitor this for 10,000 years? How will the contents be stabilized to prevent explosions and leakage of radioactive waste into the groundwater? Who will pay the astronomical costs?

However, during the 1980’s burial became the official government policy, despite the objections of many scientists, and national organizations concerned about dangers to the environment.

 

The information in this article is plagarized from a dear and respected friend of mine. It was written a number of years ago. LightParty About the Roy Process (unrelated) the nuclear waste information is still pertinent here.

He is one of a concerned group of millionaires in Marin County, California who love and care about me.

I sent him this.

Hi Da Vid,

Sprout Amir from the Gorilla Choir here.

Yes there is hope.

Here is my recent series.

NAVY LENR Patent Granted – Transmutes Radioactive Waste

This U.S. Navy patent transmutes radioactive elements into less harmful elements through a benign “cold fusion” low energy nuclear reaction process. The patent was granted April 16, 2013 for a device and method that shortens the half-life of radioactive materials by increasing their rate of emissions. The process creates high pressure steam for the turbines eliminating the need for any refueling of existing nuclear reactors.

I noticed your earlier interest in this subject. It seems you follow everything.

lightparty.com Energy Transmutation Nuclear Waste

Your article was about the Roy Process. This is new, different, and more promising.

Anyways,

You could fly to Missouri now and attend the last few days, it ends July 27th. Talk to some of these cold fusion scientists. Form a company together. Buy a licence from the SPAWAR technology gateway. Together, (with this new info they have the know how and capability) you and the scientists could build a small “GeNie” type modular reactor that works (10 to 20 spent fuel rods transmuted in each).

Fits in a 40 foot shipping container. Send 50 or a 100 of them to every nuclear power plant in the world. Charge them for the steam. Charge them a fee for each fuel rod transmuted. Retain ownership of each “GeNie” type reactor.

Ruby Carat, my editor is covering the ICCF conference now. Please develop a Light Party funding group and send Cold Fusion Now a chunk. She needs a $10K infusion into the coffers of CFN.Org after utilizing her savings, leaving a high pay field (she holds many degrees), and traveling extensively to produce alot of quality videos and articles advocating this technology.

You know love, love, love, and more love. Sent your way… Always we pray.

Thank you for the loving works you do…. We love you!

Sprout Amir aka Greg Goble

I was in the presidents’ office of the Media Writers Guild Union last week, in San Francisco, showing my recent Navy LENR Patent Series and asking help with getting this news published in mainstream print.

I was told that this Navy patent granted transmuting radioactive waste is the scoop of the decade… It’s probably the scoop of the Century! Now the Guild is contacting writers, helping to fullfill my request.