Andrea Rossi 2nd US Patent Application Published 6 Nov 2014 at USPTO

IMG_9493_portrait1The United States Patent Office has published a further patent application by Andrea Rossi on November 6, 2014.

This application was filed in the US on April 26, 2014 claiming priority from three earlier US applications made on May 2, May 3 and May 10, 2013. No changes can be made to the disclosure as from April 26, 2014. It will still take another year for the US Examiner Tu Ba Hong to search the invention and issue a first Office Action.

This filing was paralleled by a separate application made under the Patent Cooperation Treaty – PCT on April 26, 2014. The PCT filing claims the benefit of the same three US priority filings and probably has the same text as the US application made on the same date. Like the US application no changes can be made to the PCT disclosure as from April 26, 2014.

In both cases the original applicant was Industrial Heat, Inc. of 111 E Hargett St, Ste 300, Raleigh, North Carolina. This name was corrected before the USPTO on October 6, 2014 to IPH International BV of the same address and an assignment of the application to Leonardo Corporation was entered on the same date. The US application as published on November 6th shows Leonardo Corporation of 1331 Lincoln Road, Suite 601, Miami Beach, Florida as the applicant.

While the US filing will not be searched for a year the PCT application as published was accompanied by an International Search Report – ISR. No relevant references were found by the PCT Searcher. Three references were cited as being of interest but not damaging to the application: the 2011 US published application corresponding to Rossi’s first PCT filing, the Fleischmann & Pons PCT application of 1990 as filed by the University of Utah and a Russian reference RU 2267694 by Chabak Aleksandr Fedorovich published January 10, 2006. The PCT search was carried out in Moscow by the International Search branch of the Russian Patent Office. The only class searched was a single international class F24J 1/00. By way of contrast the corresponding US application was tagged for searching in a number of classes, including the International Class for Cold Fusion technology.

Before addressing the content of the disclosure in this new, published, 2nd Rossi US application, some further observations will be made about the “tombstone” data associated with this filing. The American firm acting on behalf of the original applicant, Industrial Heat, Inc., is NK Patent Law of 1917 Water’s Edge Drive, Raleigh, North Carolina. This firm has 5 patent professionals, 4 of whom are attorneys and one patent agent. They also have offices in Durham, North Carolina. At the same time, Rossi is pursuing his 1st application in the US using the New York firm of Hedman & Costigan PC. One possible reason for separate firms being involved is that the applicant, Industrial Heat, Inc. in the 2nd filing may have chosen the firm to have carriage of the 2nd application.

The fact that the 2nd application has been transferred from the name of Industrial Heat, Inc., (changed to IPH International BV), to Leonardo Corporation as recently as October, 2014 suggests that the original applicant may have withdrawn from being associated with the application. Leonardo Corporation was originally formed by Andrea Rossi. Presently, there is no reason for Rossi to change the patent firm designated for that 2nd application as no substantial expenses are imminent. It may be that they will agree to continue acting on a pro bono or on a deferred remuneration basis. Certainly it would be cost efficient for Rossi to consolidate the 2 applications in a single firm. It will be interesting to see which one he chooses.

The fact that the search was carried out at the Russian Patent Office is not especially relevant. They can do competent searches. But the limitation of that search to a single class is of more concern. To be fair, searches are supposed to be directed to the subject matter of the claimed invention. This invention has a number of claims that are likely to be amended in the course of examination. It would be highly desirable for the scope of search in respect of this application to be broadened. There is a prospect that this may occur when the US Examiner reaches the US application. But if the US Examiner chooses to reject the application as being based upon the unproven phenomenon of Cold Fusion, he may skimp on the search. That kind of rejection is often an easy way out for US Examiners who are on a tight schedule. There may be a template for rejecting Cold Fusion applications circulating amongst the Examiners at the USPTO.

Now we can turn to the substance of the disclosure in the pending US application.

It is important to appreciate that, with the amendments to the US patent law of 2013, it is now true around the world that no-one can obtain a valid patent for an arrangement that has been “made available to the public” prior to the filing date of an application. Something is “available to the public” if disclosed in any way or if it is “obvious” based upon everything that is known. If you delay filing for a patent then you are playing Roulette with the system.

If it is too late to obtain a patent for a key feature of an arrangement under these rules then no-one can obtain a patent on that specific feature. Keeping a concept secret at that point is likely to only provide a limited period of protection from competition. Secrets will out, eventually.

The fundamental principle of the free market is that everyone is free to copy whatever is not specifically protected under Intellectual Property laws.

Even if Andrea Rossi has discovered an effect for which he deserves a Nobel Prize, he will not be entitled to obtain a patent unless the patent documents as filed have been properly prepared. This means that the invention has to work (also a requirement for a Nobel Prize), and that the disclosure accompanying the application as filed must be sufficient to allow persons skilled in the field to achieve the benefits of the invention. The disclosure must be “enabling”. Then as the applicant he must develop language for one or more patent claims that specify arrangements that contain a feature which is both new and unobvious.

Referring now to the present application, while the claims look ridiculous as a first impression, at the time of filing claims can be merely placeholders. Claim 1 as filed reads:

“1. A reactor device comprising: a sealed vessel defining an interior; a fuel material within the interior of the vessel; and a heating element proximal the vessel, wherein the fuel material comprises a solid including nickel and hydrogen, and further wherein the interior of the sealed vessel is not preloaded with a pressurized gas when in an initial state before activation of the heating element.”

Is this new? Is it unobvious? Does it describe something that works? Dynamite in a can along with nickel and water vapour meets this definition when thrown in a fire. Water contains hydrogen, doesn’t it? A claim should include enough context to focus it on a structure that works, is new and is unobvious.

Deficiencies in the claims at the time of filing are not fatal. The issue is whether there is “meat” in the disclosure sufficient to support claims that are valid and have real value. Claims can be presented at a later date so long as they are “supported”, ie, address structures sufficiently outlined in the disclosure at the time of filing. What, therefore, is disclosed in this patent application?

Here is a sample of what is asserted in the disclosure:

“[0046] Experimental investigations of heat production in layered tubular reactor devices according to several embodiments have been conducted. In each example, the reactor device was charged with a small amount of hydrogen loaded nickel powder. An exothermic reaction was initiated by heat from resistor coils inside the reactor device. Measurement of the produced heat was performed with high-resolution thermal-imaging cameras, recording data every second from the hot reactor device. Electrical power input was measured with a large bandwidth three-phase power analyzer. While all three experiments yielded interesting results, the reactor device 100 was damaged during the first of the three experiments. The latter two experiments were conducted without equipment failure, and data was collected in the latter two experimental runs for durations lasting 96 and 116 hours, respectively. Heat production was indicated in both experiments. The 116-hour experiment also included a calibration of the experimental set-up without an active charge present in a dummy tubular reactor device. In the case of the dummy reactor device, no extra heat was generated beyond the expected heat from the electrical input.”

What is the structure that makes this work?

[0048] …… In a reactor device disclosed herein, an exothermic reaction is fueled by a mixture of nickel, hydrogen, and a catalyst. In the embodiments detailed in these descriptions, thermal energy is produced after the reaction within an inner-most tube of a layered tubular reactor device is activated by heat produced by a set of resistor coils located outside the inner-most tube but inside the layered tubular reactor device.

[0170] Each reactor device, according to these descriptions, includes a reaction chamber in which nickel powder and hydrogen react in the presence of a catalyst……

I don’t want to go any further. These are the only two references to a “catalyst” appearing in the application. No reference is made to a “catalyst” by name in the claims. How can this be an enabling disclosure?

For clarification as to patenting requirements in the United States here is an excerpt from the US Patent Act:

35 U.S. Code § 112 – Specification

(a) In General.— The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same, and shall set forth the best mode contemplated by the inventor or joint inventor of carrying out the invention.

How can the best mode requirement be met when a catalyst is required and that catalyst is not disclosed? How could this application even have been filed?

Others can search through this disclosure for ostensibly useful technical information, but as a patent filing this application will encounter great difficulties.

Status Report – Rossi Pending US Patent Application

Photo: New model E-Cat in operation from the report Observation of abundant heat production from a reactor device and of isotopic changes in the fuel [.pdf]

Observation of abundant heat production from a reactor device and of isotopic changes in the fuel [.pdf]

This is an update on the status of the above patent application. A previous comment on that US filing was made on ColdFusionNow – here.

This filing in the United States is descended from an original filing made in Italy on April 9, 2008. That Italian filing served as a priority filing for a PCT application, PCT/IT2008/000532, filed August 4, 2008, claiming the benefit of the earlier Italian filing date. (The original Italian filing resulted in the issuance of an Italian patent just before the Italian patent law was changed from a non-examination system to an examination system).

Following the procedures of the Patent Cooperation Treaty – PCT, the International PCT application was delivered to the US as a national entry filing on September 16, 2010. This application was duly published as serial number 12/736,193 and was placed in the queue for examination. As reported in the earlier ColdFusionNow article, a US Examiner’s Office Action issued on March 26, 2014. As is typical, this Office Action was an initial rejection, giving the applicant, 3 to 6 months to file a Response overcoming the Examiner’s objections. Such a Response, dated September 25, 2014, was filed on September 29, 2014. This posting reports on that Response.

Before addressing the Response in detail, the covering letter expresses thanks to the Examiner for the opportunity for Dr. Andrea Rossi and the attorney to have had a personal interview with the Examiner on April 22, 2014. Apparently no decisions were reached between the parties at that interview.

The Examiner’s Office Action of March 26, 2014 included a number of rejections:

Invention Inoperable

The Examiner asserted that “there is no evidence in the corpus of nuclear science to substantiate the claim that nickel will spontaneously ionize hydrogen gas and thereafter ‘absorb’ the resulting proton”. He went on to say that the nuclear conversion of nickel 58 into copper 59, while known, has only been observed experimentally “in the context of an accelerated (proton) beam into a nickel target. The element of acceleration is necessary in this matter as the only way for the proton to overcome the basic Coulomb repulsion between the proton and nickel nuclei.” The Examiner also observed that if the reaction were possible, as claimed by Rossi, it would also occur spontaneously in nature.

The Examiner also made a perfunctory further objection that, since the invention was inoperable, the disclosure that was provided was necessarily insufficient to enable workmen after the patent expired to reproduce the invention. The Examiner then requested evidence that the invention actually worked.

In the response by Rossi’s attorneys no evidence of operability was filed. Instead, the attorneys asserted that the Examiner had failed to establish a basis that would justify a request for evidence of operability. Citing In re Mitchell R Swartz, a year 2000 decision by the US Court of Appeals for the Federal Circuit, the attorneys submitted that the Examiner had failed to follow the Guidelines for Examination of Applications for Compliance with the Utility Requirement provided by the US Patent Office in its Manual of Practice and Examination Procedure. In particular, the attorneys asserted that the Examiner, in alleging that the utility described in the patent disclosure was not credible, had failed to:

a) provide support for factual findings relied upon by the Examiner in reaching this conclusion, and
b) provide an evaluation of all relevant evidence of record, including utilities taught in the closest prior art sufficient to support the basis for requiring proof of operability.

The attorneys referred to the description of the procedures provided in the patent disclosure for producing the described reaction, saying that no basis had been established for departing from the normal presumption that such descriptions are true and that the Examiner had not pointed out any deficiencies in that description.

Comment: Challenging the right of the Examiner to provide evidence of utility is an alternative to actually providing such evidence. Such a challenge provides grounds for objecting on appeal to the requirement by the Examiner that such evidence be filed. If the Board on appeal agrees that the Examiner’s requirement was legitimate and no evidence was filed, then the application will be rejected. If the Board concludes that the Examiner’s objection was unsupported, it’s unclear whether the application will be returned to examination with instructions for the Examiner to provide a better justification for such a requirement; or whether the application will be allowed to go forward on the basis that such evidence need not be filed, assuming that all other legitimate objections are overcome.

Citation of Prior Art

The Examiner had also issued a rejection based on the assertion that the invention as claimed by Rossi was “obvious” in view of the earlier technology described in a journal article authored by one Butler and others: Butler et al., “Radiative proton capture by Ni-58, and Co-59,” Phy. Rev. v.108 No. 6 pp. 1473-1495 [1957].

Butler describes a process for accelerating protons into a silver-plated nickel target. The attorneys for Rossi pointed out that Claims 1 and 7 as now pending (the only 2 independent claims) stipulated that nanometric nickel powder is exposed in a metal tube to hydrogen gas at high temperature and pressure. This, it was said, was sufficiently different from Butler that the rejection of Claims 1 and 7 on the basis of “obviousness” was not justified.

Claims 1 and 7 as amended and now pending read as follows:

1. A method for carrying out an exothermal reaction of nickel and hydrogen, characterized in that said method comprises the steps of providing a metal tube, introducing into said metal tube a nanometric particle nickel powder and injecting into said metal tube hydrogen gas having a temperature much greater than 150°C and a pressure much greater than 2 bars.

7. A modular apparatus for providing an exothermic reaction by carrying out the method according to claim 1, characterized in that said apparatus comprises a metal tube (2), including an nanometric particle nickel powder (3) and a hydrogen gas at high temperature and pressure.

Comment: If these two claims were valid the dependent claims otherwise present in the patent filing would be irrelevant. Further, apart from the objections of inoperability and obviousness both of these claims are indefinite. Claim 1 refers to: “hydrogen gas having a temperature much greater than 150°C and a pressure much greater than 2 bars”. The words “much greater than” make the claim indefinite. Similarly in Claim 7, the reference to “hydrogen gas at high temperature and pressure” is indefinite. This could easily be corrected in another Response, and the attorneys for Rossi are probably quite aware of this indefiniteness deficiency.

Additionally, both of these independent claims stipulate for the presence of a “metal tube”. In the absence of such a component, a competing construction would not infringe these claims. For example, if a ceramic tube were employed, it would not fall under the language of the claim. Neither would a metallic containment chamber if, for example, a cubic chamber were employed. These distinctions might be described as “loopholes”.

Loopholes cannot be closed by any of the dependent claims. Every dependent claim adopts the limitations of the independent claim to which the dependent claim refers back.

Unusually, the Response terminates by observing that the applicant has filed a petition to suspend prosecution of this application under the provisions of Rule 1.103 of the US Patent Rules. This reference occurs in the Response available at the US Patent Office website, but the documentation in support of this petition is not available over the Internet. This particular Rule provides as follows:

37 C.F.R. 1.103 Suspension of action by the Office.

a) Suspension for cause. On request of the applicant, the Office may grant a suspension of action by the Office under this paragraph for good and sufficient cause. The Office will not suspend action if a reply by applicant to an Office action is outstanding. Any petition for suspension of action under this paragraph must specify a period of suspension not exceeding six months. Any petition for suspension of action under this paragraph must also include:

(1) A showing of good and sufficient cause for suspension of action; and
(2) The fee set forth in § 1.17(g), unless such cause is the fault of the Office.

One can speculate as to reasons that might be provided in support of such a Petition.

Overall Commentary

This Response has the look of a buy-time initiative by the attorneys acting on behalf of Rossi. No attempt has been made to file evidence of operability as requested by the Examiner. If the Examiner simply reiterates his request for such evidence, possibly providing further observations in support, then Rossi will be able to file the evidence in response. If he fails to do so, it is likely that the Examiner will make his rejection of this application final. In such event, Rossi will have the option of filing an appeal to the Patent Trial and Appeal Board or refiling the application as a “Continuation”. Either initiative will likely suspend disposition of this application for a period of 2 to 4 years.

Although not addressed by the attorneys filing this Response, this application may possibly also be defective for failing to provide a description of how to implement the invention sufficient to “enable” workmen to reproduce the results as claimed. If this were true, it would be fatal to the application, or any patent that might issue thereon in error. It is too late for Rossi to add any subsequently acquired information to this filing. Any further filings will be subject to any novelty limitations that have arisen since 2008.

US Examiner Addresses Andrea Rossi US Patent Application

The US Examiner at the United States Patent Office has finally reached the patent application of Andrea Rossi. That application was first filed as an Italian filing on April 9, 2008. It was translated into English and up-graded into an application under the Patent Cooperation Treaty – PCT on August 4, 2009. And it finally arrived at the US Patent Office as of September 16, 2010.

The text of the disclosure in this application became frozen as of the date of the PCT filing, August 4, 2009. It is not permissible to amend the story after the “final” filing of a regular patent application, which is how a PCT application is treated. Therefore this application represents Rossi’s understanding of his invention as of August 4, 2009.

As is usual with a first initiative by a US Patent Office Examiner, this Office Action rejects the application. Rossi now has three months from March 26, 2014, extendable upon fee payments up to six months, to file a Response. That Response must overcome the Examiner’s objections or the application will go abandoned, unless Rossi pays fees for Continued Examination or files an appeal.

The key claim that Rossi was endeavoring to obtain reads as follows:

“1. A method for carrying out an hexothermal reaction of nickel and hydrogen, characterized in that said method comprises the steps of providing a metal tube, introducing into said metal tube a nanometric particle nickel powder and injecting into said metal tube a hydrogen gas having a temperature much greater than 150.degree. C. and a pressure much greater than 2 bars.”

“Hexothermal” is spelling error for “exothermal” which can easily be corrected. This claim is supposed to identify a new method which will produce excess heat.

While the application explicitly states, in para [0065]: “the invention actually provides a true nuclear cold fusion”, the Examiner’s Office Action does not use the expression “Cold Fusion” to criticize the filing. Instead, the Examiner expressed doubt that the described invention would be able to provide the heat as alleged and claimed. He therefore concluded that, unless shown to the contrary, he was going to rule that the invention does not work, i.e. it is “inoperable”. An invention must be useful to qualify for a patent. Therefore, unless Rossi can prove the contrary, this application will be rejected for failing to meet the utility requirement of Section 101 of the US Patent Act.

While Rossi cannot add any further text to the disclosure in this application by way of amendment, if he can show that, following the recipes set-out in his original disclosure, the results as promised can actually be achieved, then the Examiner may withdraw this objection. Rossi would have to provide authoritative evidence to this effect, probably from an independent source such as a Research Institute or an established Engineering firm in order to be sure of satisfying the Examiner. That may cost a substantial amount of money.

Unfortunately, any outside evaluator would be required to follow the procedures described in the application based on knowledge as it existed as of the date of the PCT filing on August 4, 2009. This may prove a barrier to demonstrating utility.

As an additional ground of rejection, the Examiner has also alleged that the disclosure is inadequate as failing to meet the requirements of Section 112 of the US Patent Act which reads as follows:

“The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same, and shall set forth the best mode contemplated by the inventor of carrying out his invention.”

Rossi faces the challenge that he must not only prove that the invention as described in the application actually works in the manner as promised, but also that the disclosure is sufficient to enable others to achieve such useful results.

The Examiner did not refer to this specific passage in the disclosure of the Rossi patent application:

“[0025] In applicant exothermal reaction the hydrogen nuclei, due to a high absorbing capability of nickel therefor, are compressed about the metal atom nuclei, while said high temperature generates internuclear percussions which are made stronger by the catalytic action of optional elements, thereby triggering a capture of a proton by the nickel powder, with a consequent transformation of nickel to copper and a beta+ decay of the latter to a nickel nucleus having a mass which is by an unit larger than that of the starting nickel.”

The feature of using catalyzing material is addressed in one of the dependent claims as follows:

“8. A method according to claim 1, characterized in that in said method catalyze materials are used.”

Claim 8 could never go forward. There is no description in the disclosure identifying what constitutes the specific catalyzing materials. Nothing can be claimed that it is not supported by an enabling disclosure in the body of the patent specification.

Furthermore, applicants are expected to describe the: “best mode contemplated by the inventor of carrying out his invention”. If the applicant knows of special catalytic materials that make the invention work better, then he is required to disclose them in the application. Having acknowledged that such materials exist and having failed to identify them, this application violates the requirements of Section 112 and could be rejected on that basis. The Examiner may raise this point in a future Office Action if prosecution continues.

This is a serious deficiency in this application.

Another example of inadequate patent drafting is the following statement in the disclosure:

“[0062] The above mentioned apparatus, which has not been yet publicly disclosed, has demonstrated that, for a proper operation, the hydrogen injection must be carried out under a variable pressure.”

If it is known that a mandatory procedure must be employed in order to make a claimed process operate properly, then that procedure has to be included in the principal claim, Claim 1. In this case, such a limitation has not been incorporated into Claim 1. This claim could have been rejected on that basis alone.

One of the depending dependent claims does provide as follows:

“4. A method according to claim 1, characterized in that said hydrogen is injected into said tube under a pulsating pressure.”

Being a dependent claim, Claim 4 overcomes this deficiency of Claim 1 in that it does incorporate a feature asserted to be essential in the disclosure. The limitations of Claim 4 are therefore directly available to be added to Claim 1 in an attempt to repair its deficiency.

However, claims must also be definite and an Examiner would typically ask for limitations to be included in the claim that characterize the types of pulsations suitable to ensure that the claim covers a fully functional procedure. If a Response were to be filed, it would be appropriate to search through the disclosure for ranges and other limitations on pressure pulses to be incorporated into Claim 1 in order to ensure that Claim 1 describes a method that actually works.

There are no references in the disclosure as to the nature of the pulsations: their strength, frequency, duration, waveform or other parameters. If the Examiner were to raise this type of objection the consequences would be fatal to the application

There are therefore many grounds for the Examiner to have rejected this application. Not all were applied in this first Office Action. Instead, the Examiner relied upon lack of operability as the primary objection. In addition, he also made a novelty objection based on the assertion that Claim 1 describes something that had been done before, referring to published experiments wherein nickel was converted to copper by ionic bombardment using a linear accelerator. This is a pretty lame objection. A reading of Claim 1 will show that there is no stipulation in the claim that a nuclear transmutation will occur. Rather, it is in the discussion of theory in the disclosure that such allegations are made. The Examiner is wrong in criticizing Claim 1 on this basis. The Examiner was simply confused or inattentive in making this objection.

The disclosure contains an extended discussion of theory which, rather than helping an applicant will usually only get an applicant in difficulty. It’s not necessary to describe a theory why something should work. It’s essential to describe a procedure by which an actual operating version of the invention can be implemented. Any description of a theory is superfluous. Indeed, it is dangerous to suggest a theory; the theory might be wrong. As has occurred here the Examiner has seized upon flaws in the theories recited to justify his skepticism that the invention actually works as promised. It would have been much better, for patenting purposes, not to have included any discussion of theory.

One can only speculate how a patent application such as this was originally drafted and managed to go forward. It must have cost the applicant tens of thousands of dollars, including translations from the Italian, to get to this stage. Was this done intentionally, knowingly that the application was deficient? This is not logical. It’s more likely that the original patent attorney simply wrote down the material as reported to him by the inventor without giving feedback and guidance on the inadequacy of the disclosure. This happens all too often.

Inventors should be more aware of what is really expected to produce a patent application that will support a valid patent grant. This is quite apart from the separate issue of producing a valuable patent which is meaningful and effective. To minimize the risks of spending money futilely, in the case of important inventions, it would be appropriate to get a second opinion from a second attorney. This should be done well before the end of the initial priority year in time to make adjustments and corrections before the one-year deadline arrives.

This application by Andrea Rossi has been available for public examination for several years. If it describes a working invention one would presume that others would have followed the instructions in the disclosure and achieved the promise of excess energy. Though not proof of the inadequacy of the disclosure, such validating demonstrations have not been publicly disclosed. One can only speculate why this has not occurred.

Andrea Rossi is entitled to file further applications containing an improved disclosure so long as his claims focus on material that is new, i.e., are limited covering only things not previously available to the public. Such applications are not published until they have been pending for 18 months from the earliest, original filing date. It is possible that Mr. Rossi has a follow-on application that has already been filed but is not yet published. We can only wait in order to see if this is true.

Power equivalent to the Sun? – We already have it!

NASA Solar cross section 8Sept13By David J French

Although long, I believe that the following analysis is worth pursuing to the end.

While browsing through Wikipedia on the Internet I recently came across this interesting observation about the Sun:

“The power production by fusion in the core varies with distance from the solar center. At the center of the Sun, theoretical models estimate it to be approximately 276.5 watts/m3,[51] a power production density that more nearly approximates reptile metabolism than a thermonuclear bomb.[b] Peak power production in the Sun has been compared to the volumetric heats generated in an active compost heap. The tremendous power output of the Sun is not due to its high power per volume, but instead due to its large size.”
http://en.wikipedia.org/wiki/Sun – (under “Core”)

What is this? I always thought the Sun was a continuously self-fueled hydrogen bomb. Not only are these levels far below that of a hydrogen bomb, but the amount of heat being produced on a unit of volume basis is indeed a trickle.

A cubic meter contains 1,000,000 or 100 X 100 X 100 cubic centimeters. Therefore, according to this reference, the rate at which heat is flowing out of a cubic centimeter of the Core at the center of the Sun is 0.2765 milliwatts! This would hardly light an LED. But we must check the footnote reference; after all this is Wikipedia.

Footnote 55 links to a website operated by the Fusion and Plasmas Group of the Contemporary Physics Education Project (CPEP). CPEP is a non-profit organization of teachers, educators and physicists, with substantial student involvement. CPEP creates educational materials on contemporary physics topics for use in introductory physics classes. This website addresses introductory educational materials on fusion energy and the physics of plasmas. http://fusedweb.llnl.gov/CPEP/Chart_Pages/5.Plasmas/Sunlayers.html

This link starts by explaining that the Core, the innermost layer of the Sun where energy originates, has a density of 160 g/cm3, 10 times that of lead. At this density it might be expected that the Core would be solid. However the Core’s temperature of 15 million degrees Kelvin, virtually identical to degrees Centigrade at this temperature, or 27 million degrees Fahrenheit. This high temperature keeps the Core in a fluid plasma state.
This reference also includes a chart based on a Computer Model of the Sun at 4.5 Billion Years into its lifetime, i.e., today. This chart can be viewed at the end of the last link referenced above.

The key figure that we’re looking for is the rate at which heat is being produced in the center of the Sun, and there it is under the title: Fusion Power Density (joules/sec-m^3). At the very center of the Sun, the value is 276.5 joules/sec-m^3. This means 276.5 Watts per cubic meter just as cited in the Wikipedia article.
According to that chart, the production of energy peters out by about one quarter of the radius of the Sun (24% shown on the chart shows heat production at the rate 0.67 Watts per cubic meter.) This turns out to be a very important factor.

But wait a minute, this data is the result of a “Computer Model of the Sun”, attributed to B. Stromgrew (1965) reprinted in D. Clayton Principles of Stellar Evolution and Nucleosynthesis. New York: McGraw-Hill, 1968, and others. Maybe these mathematicians have gotten it wrong. There must be another way to verify if this set of data is correct.

United States National Aeronautics and Space Association – NASA

The Marshall Space Flight Center’s Solar Physics web site, operated as part of NASA, is an authoritative source for research about the Sun. At this site background facts about the Sun are given here: http://solarscience.msfc.nasa.gov/ . On the very opening page the following key data is provided:

Sun Facts

Solar radius = 695,990 km = 432,470 mi = 109 Earth radii

Solar mass = 1.989 1030 kg = 4.376 1030 lb = 333,000 Earth masses

Solar luminosity (energy output of the Sun) = 3.846 1033 erg/s

Surface temperature = 5770 K = 9,930° F

Surface density = 2.07 10-7 g/cm3 = 1.6 10-4 Air density

Surface composition = 70% H, 28% He, 2% (C, N, O, …) by mass

Central temperature = 15,600,000 K = 28,000,000° F

Central density = 150 g/cm3 = 8 x Gold density

Central composition = 35% H, 63% He, 2% (C, N, O, …) by mass

Solar age = 4.57 109 yr
________________________________________

Now we can do some calculations.

Objective: to calculate the energy flux/power density at the Core of the Sun per unit volume arising from nuclear synthesis

Calculation:

Volume of a sphere = 4/3 X 3.14 X radius3

Radius of Sun (from above) = 695990 km = 700000 km = 7 X 1010 cm

Radius of Core = 1/4 Radius of Sun = 1.75 X 1010 cm

Volume of Core = 4/3 X 3.14 X (1.75 X 1010 )3 cm = 22.437 X 1030 cm3

Solar luminosity (from above) = 3.846 X 1033 ergs/sec = 3.846 1026 joules/sec

Solar Heat Flux per unit volume = total heat flow/ volume = 3.846 X 1026 joules/sec / 22.437 X 1030 cm
= 0.01714 milliwatts/cm3 (or 17 Watts/m3)

Note: this is the heat flux averaged-out over the entire Core. Nuclear syntheses does not occur evenly throughout the Core. It is at a maximum at the center and tapers-off towards its outer limit at about one quarter of the solar radius, cf:

“The temperature at the very center of the Sun is about 15,000,000° C (27,000,000° F) and the density is about 150 g/cm³ (about 10 times the density of gold or lead). Both the temperature and the density decrease as one moves outward from the center of the Sun. The nuclear burning is almost completely shut off beyond the outer edge of the core (about 25% of the distance to the surface or 175,000 km from the center). At that point the temperature is only half its central value and the density drops to about 20 g/cm³.”
http://solarscience.msfc.nasa.gov/interior.shtml

This decline in the heat flux is not necessarily linear. The chart above shows an output power of 19.5 watts per cubic meter at a distance of 14% of the solar radius and 6.9 W per cubic meter at a distance of 19% of the solar radius, with heat generation tapering off to nothing at 25% of the solar radius. Accordingly, this calculated value from NASA as a source is consistent with the article and footnote in Wikipedia

Analysis – How can this be true?

Remarkable as this appears, it seems to be absolutely true: the matter at the Core of the Sun is generating heat at a rate that is less than a milliwatt per cubic centimeter. Indeed, the average rate at which heat is being generated within the Core, from the center of the Sun out to 25% of the Sun’s radius, is on the order of 0.01714 milliwatts/cm3 (or 17 Watts/m3). Astounding!

Someone else has noticed this fact and provided an annotation in the paragraph in the Wikipedia referenced above. That annotation reads as follows:

“A 50 kg adult human has a volume of about 0.05 m3, which corresponds to 13.8 watts, at the volumetric power of the solar center. This is 285 kcal/day, about 10% of the actual average caloric intake and output for humans in non-stressful conditions.”

Essentially, this says that human beings generate heat, or consume calories, at a rate that is 10 times greater than that at the center of the Sun.

How can this be true?

There are several factors that contribute. The first explanation is that the Core of the Sun is surrounded by a very large amount of matter that does not generate heat: three quarters of the solar radius. The solar radius is 700,000 km and therefore the heat generated at the center of the Sun has to pass through 525,000 km of matter in order to escape.

The NASA website states:

“Although the photons travel at the speed of light, they bounce so many times through this dense material that an individual photon takes about a million years to finally reach the interface layer. The density drops from 20 g/cm³ (about the density of gold) down to only 0.2 g/cm³ (less than the density of water) from the bottom to the top of the radiative zone. The temperature falls from 7,000,000° C to about 2,000,000° C over the same distance.”

This reference is with respect to photons traveling from the bottom to the top of the “radiative zone” between the Core of the Sun and the next layer up. This does not represent the distance to the surface of the Sun. Again, from the NASA website:

“The radiative zone extends outward from the outer edge of the core to the interface layer or tachocline at the base of the convection zone (from 25% of the distance to the surface to 70% of that distance). The radiative zone is characterized by the method of energy transport – radiation. The energy generated in the core is carried by light (photons) that bounces from particle to particle through the radiative zone.
“Although the photons travel at the speed of light, they bounce so many times through this dense material that an individual photon takes about a million years to finally reach the interface layer.”
http://solarscience.msfc.nasa.gov/interior.shtml

Accordingly, this 1 million years travel time applies to a mere 45% of the solar radius. However, this is a part of the Sun where the matter is very dense.

Now the Sun is 4.5 billion years old and if we will assume that it has been radiating at the same rate (not necessarily so) over that period of time, we can imagine that a lot of heat, in the form of photons, has spent a lot of time making the trip from the Core to the outer surface where it can escape. One million years is a long time for heat to accumulate even if it is only being generated at the rate of 100 or so watts per cubic meter in the Core. And 4 1/2 billion years is a very long time. Seen from this perspective, the phenomena is a little more believable.

And there is still another way to look at it.

The number of cubic meters inside a sphere can be much greater than the number of square meters on the surface. Imagine a square meter of the Sun’s surface sitting on a pyramidal wedge that extends 700,000 km all way back into the center of the Sun. Only the last quarter of this distance is generating heat. But one quarter of the radius of the Sun is still 175,000 km. Therefore, even though the pyramid is tapering to a point, there are 175,000,000 meters of heat-generating Core material backing up that single meter on the surface.

The same analysis can be carried out for all of the square meters on the surface of the Sun. On this basis, the value for the rate of heat generation within the Core of the Sun as contrasted with the rate of heat radiation on the surface of the sun at the surface of the sun becomes more understandable.

So the proposition that we started with, that the Core of the Sun generates heat at a rate that is less than 1 milliwatt per cubic centimeter, is probably true.

Consequences

Why have we done all this calculating? The answer is that we are concerned to compare solar fusion with cold fusion. But first a further observation on the issue of the “quality” of heat. Then we can compare hot and cold fusion.

My first reaction was that my concept that the Sun was a continuously self-fueled hydrogen bomb was totally wrong. Instead it represents the embers from a fire that has been smoldering for 4.5 billion years.
These are not ordinary embers however.

While the rate of heat generation in the center of the Sun is modest, the temperature is not. The NASA data provided above indicates that photons proceeding outwardly from the Core start on their journey with the temperature equivalent of 7,000,000°C. By the time they reach the surface, the temperature equivalent has dropped to 5600°C. The heat from the Core is then released into space in the form of high temperature photons. In this sense, the heat being generated in the center of the Sun is different in quality from the same amount of heat being generated in a heap of rotting manure. But this quality is lost when we use the heat of sunshine to warm our swimming pools.

One difference between hot and cold fusion is the quality of the heat being produced, at least so far. But at what cost?

This lead me to explore the efforts being made to create energy for mankind using fusion. A little bit about this topic can be found here: http://en.wikipedia.org/wiki/Fusion_power

Hot Fusion

For more than 30 years scientists have aspired to create usable energy using fusion. The latest version of effort is that of the International Thermonuclear Experimental Reactor – ITER: http://www.iter.org/

The costs have been remarkable:

“ITER was originally expected to cost approximately €5billion, but the rising price of raw materials and changes to the initial design have seen that amount more than triple to €16billion.[10] The reactor is expected to take 10 years to build with completion scheduled for 2019.[11]” http://en.wikipedia.org/wiki/ITER

The figures quoted are simply for this single project. Many billions more have been spent over the years by countries around the world to advance the goal of achieving useful energy output from hot fusion. There has been a lot of talk in support of this process of bringing the energy source of the Sun down to the surface of the earth. But these kinds of aspirations do not seem compatible with the calculated values for the rate of output of energy being generated within the Sun as examined within this article.

Essentially, the hot fusion scientists are not trying to emulate the Sun. They are trying to emulate a supernova! With that thought in mind, it is understandable why the United States withdrew as a primary participant from the international ITER project in 1998 although it did rejoin as a junior 9% partner in 2008.

Next is the issue of Cold Fusion

Cold Fusion

Cold Fusion has been in disrepute over the last 24 years. This is largely due to a rush-to-judgment that occurred in 1989 at a time when many laboratories around the world could not duplicate the effect.

However, particularly in the last 20 years, numerous scientists have been able to demonstrate the presence of “unexplained excess energy” arising from the Cold Fusion effect. Generally this comes from super-loading Palladium with deuterium, and more recently, Nickel with hydrogen and then stimulating the generation of unexplained heat energy by applying electrical current, ultrasound, magnetic fields or simply even higher gas pressures within the metal hydride. There is no doubt that unexplained excess energy is being produced. Now that sufficient experiments have ruled-out experimental errors and chemical effects, it is hard to imagine where this energy could come from if it were not for some form of fusion effect.

Experimental results have been producing energies at rates ranging from milliwatts to watts and even some assertions of kilowatts of output thermal power from this unexplained source of energy. The apparatus producing these outputs has always been of a table-top character. Focusing on the actual source of the reaction, the Nickel or Palladium, energy has been produced in these experiments at rates or power levels that are far higher than mere milliwatts per cubic centimeter.

The quality of this heat has been generally low, e.g. under 100°C. But recently, indications have appeared (without naming them) that much higher temperatures can be achieved, e.g. 600, 700°C. Heat of this quality is indeed valuable. Such temperatures can be used to make electricity!

Conclusion

Consequently, Cold Fusion has been achieving “stellar” performances over the past 24 years, at least in terms of specific power being generated! And there are now signs that the temperature potential of this process to deliver commercially valuable results is real. By these standards, it is incomprehensible why governments have not invested further support to bring this phenomenon to commercial availability.

This is probably the most important conclusion to be drawn from the very interesting facts explored in this essay. The disparity between the support for hot versus cold fusion is extreme, indeed scandalous. But this is already known, at least in one of these two communities.

David J. French Ottawa, Canada

Concluding Observations on ICCF-18 by David French

ICCF-18 Way ahead Panel 26Jul13By David J French

I am now back from the above event after a long and circuitous drive home. Here are some of the thoughts I explored during the trip.

Without doubt the conference was wonderful in many respects, including both the opportunity to learn from the presented results of a variety of experimenters, and from seeing and talking with important, knowledgeable persons in the field, face to face. Nevertheless, I developed over the week a frustration that I finally voiced on the last day to the general assembly.

The last event of the conference was a panel discussion on what we can expect in the future: “The Way Forward” panel. Including the panel leader, there were seven persons sitting on the stage. The panel “discussion” proceeded by each of these seven individuals giving a 10 to 15 minute slideshow-supported presentation. The only exception was Mike McKubre who spoke for five minutes without a slideshow celebrating that the next ICCF will be held in Italy. He included in his remarks a criticism that too many people were revisiting past research and simply refining data to one more decimal point: “To move in ever diminishing circles doing the same thing others have done before won’t get us where we want to be.” His observations captured exactly the anxiety that I had been developing during the week.

I made as part of the question period after the panelists were done the following observations:

For this field to become commercially relevant, someone has to develop a system that will deliver:

1. Realistic amounts of power, e.g. 500-5000 W
2. At temperatures which are practical, e.g. 85°C; 150-200°C and, as a dream, 600-700°C, and
3. With coefficient of performance – COP values of at least 6, preferably 10 and possibly as high as 20 or more

In support, I observed that demonstrating milli-watts or even 2-digit watt outputs left this field in the category of a scientific curiosity. And producing even a megawatt of heat at a pathetic temperature level, such as 25°C, was virtually useless. (Perhaps it could be useful, for melting ice!) And finally, on the COP issue, I observed that it takes three barrels of oil to produce one barrel of electricity. Therefore a COP of 3 just breaks even on the electricity consumed. That’s why I set my floor value COP at 6.

There were two participants at the conference that showed commercial relevance. Robert Godes from Brillouin Corporation in California is working on a commercial boiler having nickel and palladium core operating at up to 2000 psi and 200°C. Also Brillouin Corp reports that they have a new Hot Tube model being tested at SRI that is expected to deliver steam at temperatures from 400ºC to 500ºC (750-932ºF). And Defkalion provided on July 23rd a live 9 hour Internet demonstration from Milan, Italy of their LENR technology.

This Defkalion webcast had an audience of around 1000 viewers online at its peak, including some 200 participants at ICCF-18. The Defkalion reactor was reported as providing water at 165.43ºC based on an input of 1858.8 Watts, and the heat output was 5721.6 Watts, giving a coefficient of performance (COP) of 3.1.
If these reports lead to commercial units, then these are the real champions of this year’s annual meeting.

There is still no theory about the effect. But those in the scientific community who whine about the lack of funding should realize that as long as they are producing only a teaspoon or toothpaste dab of unexplained excess energy, they will have to compete with all the vast numbers of other researchers who are lined-up to receive “blue sky” funds for their academic research. The “believers” who are chasing COP levels of 1.2 and 1.6 are hooked on the dream that someday, someone else will take their foundational research and turn it into a commercial reality. But after 24 years it’s time to get on with Part 2. If the three criteria that I have listed above are solidly met by anybody, there will be an avalanche of financial support from the commercial community. Who should receive this money? Why those who have demonstrated success, at a relevant level!

Yes, there is a Nobel Prize waiting out there for somebody who comes up with a theory that explains the effect. This is, indeed, a fascinating puzzle. And the sociology of the hunt for the answer to this puzzle will also be the basis of a number of PhD theses sometime in the future. Meanwhile, the researchers who are duplicating old experiments and ever higher levels of precision are not doing the field a good service, not unless they suddenly achieve a breakthrough in understanding. Such work is simply a demonstration of their competence in using laboratory equipment.

Before the conference I posted on ColdFusionNow a reference to the “Streetlight Effect“. I think this may have hit home with a few people; one of the presenters made an aside as he commenced to describe his 20 years of work in electrochemistry to the effect: “… notwithstanding that it might qualify as being limited to the vicinity of the streetlights”. When I made the original observation on the “Streetlight Effect” I had in mind the search for an explanation to the CF phenomenon. But having attended ICCF-18 I think there are enough favorable indications that practical applications can now be created even without having a rock-solid theory. So I suggest that henceforth the search beyond the range of the streetlights should be directed towards ratcheting-up performance in terms of the above the three criteria into the zone of commercial practicality.

If I were a rich venture capitalist looking to invest in this field, I would mine all the work that’s been done to date by undertaking a massive literature survey. There are people like Jed Rothwell, Jean-Paul Biberian and Ed Storms that know the existing literature pretty well. But they see it from their point of view. To make a breakthrough their knowledge has to be combined with the eager enthusiasm of newcomers who want to venture where others have not gone before.

What a combination if a highly energized core team of new, young and educated Cold Fusion enthusiasts can be combined with the resources and wisdom that have already been developed over the last 24 years! We may have such individuals available in the participants in the Martin Fleischmann Memorial Project. Now all that has to happen is for these enthusiasts to receive the support that will finally produce fruit from this long-struggling vine.

Message from ICCF-18: Sunday Basic Course

Some 25 enthusiastic participants signed up for David Nagel’s Basic Course, scheduled to run from 8 AM to 4:30 PM on Sunday, July 21, Registration Day for ICCF-18.

David Nagel arranged for presentations to be made by: Michael Melich; Mahadeva Srinivasan; Vittorio Violante; Michael McKubre; Peter Hagelstein ; David Nagel himself, and myself, David French. Also in the room as interested participating observers were Ed Storms and Dr. Celani from Italy. The sessions were intended to conclude at 4:30 PM but ran on to 6:30 PM partly because of the enthusiastic participation of the audience in asking questions.

This basic course, led by individuals with lots of gray hair, provided an intense but informative presentation of the fundamentals of the LENR phenomenon from its roots in 1989. It provided a great grounding for those not familiar with basic principles and a very useful refresher for those who think they’ve heard it all before.

David Nagel in his opening remarks made it clear that active Cold Fusion debunkers still exist. These are generally persons who ignore the data. He expressed a wish that he could present such individuals with a definitive collection of all of the excess heat reports that have been generated over the last 20 years. Somewhere out there, somebody has probably prepared or, hopefully, is preparing such a document.

Mike Melich shared his 2009-2010 personal experiences with Andrea Rossi that led to the rebirth, under Rossi’s initiatives, of the hydrogen gas-nickel system for generating heat energy. Discovered in the early 1990s, this gas phase type of experiment went into partial eclipse. Following Rossi’s famous public demonstration in January, 2011, this technology is now in the forefront of the field. Defkalion is planning to make two demonstration experiments based on hydrogen-nickel at ICCF-18 using the Internet. A most interesting observation by Mike Melich was that Rossi in 2009 was demonstrating Cold Fusion experiments based on hydrogen-nickel to generate heat almost as a whimsy. Since then, however, Rossi has clearly become market oriented.

Dr Srinivasan emphasized the developing importance of transmutation as an alternate phenomenon to nuclear fusion in the field. The evidence is there for some degree of transmutation, but not at profound levels or rates. It’s still unclear whether this is arising from neutron or proton capture. But recent experiments such as those of Dr Iwamera based upon deuterium permeation of metallic foils definitely shows a decline in the presence of carbon and sulfur at the same time as a rise in the level of content of manganese and silicon. Theoretical equations have been proposed to support these transmutations. Even the manganese appears to have a theoretical pathway for conversion to silicon. Accordingly, the LENR phenomenon may actually be a multiple or combination of phenomena: fusion and transmutation.

The remaining speakers provided their wisdom in their respective fields and I had the fortunate/unfortunate opportunity to be the second last speaker before David Nagel was to provide his concluding remarks. I spoke on patenting Cold Fusion inventions before the US Patent Office. Unfortunately, the audience had many many questions about patenting in general. I got drawn-in to the seductive experience of answering questions until I realized how quickly time was flying. I even had to plead with some of the speakers to stop asking their questions, and even then some persisted. In the end, David Nagel to his great credit, gave up his time to make concluding remarks in order to allow my presentation on the theme of patenting to reach its conclusion. My message was simple: think of something useful, describe how others can make it happen and stipulate a feature that is new. Not complicated when summarized in a few words, but pregnant with meaning and concepts that are hard to absorb.

I tried hard to stay away from my favorite theme, “patenting sensibly”, and focus on meeting US PTO requirements to patent Cold Fusion. I circulated an email received from the US Patent Office confirming that they will issue patents for Cold Fusion inventions if they meet the requirements of four sections in the Patent At. These are the sections that deal with the usefulness, novelty, inventive step, and the obligation of an applicant to provide a description that will enable others to reproduce the invention.

The point of my presentation was: you can get a patent for something in the field of Cold Fusion, even at the US Patent Office. I provided one example of a success, and one example of a failure.

Tomorrow the Conference begins in serious. You can tell it’s going to be serious because opening remarks are scheduled for 7:45 AM with two keynote speakers following directly thereafter.

Until the next time.

Top