Robert Duncan discusses experiments at Sidney Kimmel Institute for Nuclear Renaissance

From National Instruments page here:

“Since 1926 there have been over 200 observations of intense heat release in palladium when it is loaded well beyond its equilibrium limit with deuterium. Very careful work at two national laboratories, namely the Naval Research Laboratory in the United States, and at ENEA, the National Energy Laboratory of Italy, and at many other laboratories around the world, clearly indicate that these extreme ‘excess’ heat releases are in fact real, despite earlier claims to the contrary, and I will discuss why these experiments have proven to be so difficult to repeat. These heat releases are anomalous, since we do not yet have a clear understanding of the physical process that is responsible for these often extreme levels of heat release. These effects have been referred to as ‘cold fusion’ and ‘low-energy nuclear reactions’ in the past, but these names imply an understanding of the physical origin of these anomalous effects that in fact does not yet exist. Hence the term ‘Anomalous Heat Effect (AHE).

View this video to see Dr. Robert Duncan discussing a series of experiments that we are conducting within the Sidney Kimmel Institute for Nuclear Renaissance at the University of Missouri that are designed to elucidate the physical mechanism that is responsible for the AHE.

Looks like alot of young people in the audience, too!

Video link:

Quotes from Robert Duncan in The Mystery of Cold Fusion:

“I like to call it AHE Anomalous Heat Effect.”

From a typical 0.3 gram palladium cathode, there was regularly “heat release of about 50,000 Joules, and occasionally heat releases of over one megajoule. This clearly cannot be described by conventional chemical origins.”

“If you think that the excess heat effect is not real, you’re being oblivious to data.”

“But, I have no idea, conclusively, what’s causing it. Some propose it’s fusion. Some propose it’s a low energy nuclear reaction involving electron-weak electron capture, or something like that. There’ve been other proposals that are even broader.”

“I know it’s real. I know I don’t understand it. And that fascinates me.”

“When you see something that defies everything you think you know, that should be very motivating.”

“You don’t say, ‘I can’t study it because I don’t understand it’, you study it because you want to understand it.”

“You have to be sensitive to empirical surprise. That’s the only thing that’s improved science through history. That’s the only thing that continues to improve science today.”

The Sidney Kimmel Institute for Nuclear Renaissance is planning neutron scattering experiments for the hydrogen and deuterium system, and x-ray scattering experiments in the palladium lattice; doing both simultaneously.

“Are these anomalous effects happening in the lattice itself, or is this an effect occurring say, in the voids, that may have concentrated packets of material?”

They are trying anything that will help them understand the anomalous heat effect and understand what’s going on.

“I love the saying here: National Instruments doesn’t judge, they measure.”

“A nanogram of conclusive data is worth a ton of conjecture.”

“Superconductivity above room-temperature should be considered as empirical evidence that our understanding of physics remains incomplete. It is simply too convenient and scientifically counter-productive to dismiss all claims that don’t agree with what we currently think.”

“The scientific method is the only thing we have, and the only thing we need; that’s what got us from the Wright flyer to Apollo 11 in just sixty-six years.”

“Julian Schwinger shared the Nobel prize with Richard Feynman and Sin-Itiro Tomonaga for Quantum Electrodynamics (QED), and he had a theory that this was proton-deuterium fusion, not DD fusion, but since he was pursuing something that had been pronounced a pariah science – watch out when all the scientists in the world agree on something – but since his ideas were being forwarded after they had been so thoroughly discredited at the end of 1989, the American Institute of Physics (AIP) refused to review his [Julian Schwinger] papers for publication.”

“Now it’s certainly fair to accept his paper, review it, and if you find tragic flaws or real problems in the paper, in logic or in data analysis, to reject it. Journalists do that all the time. That’s what journalists should do. I referee for Physical Review Letters, that’s the way it should be. But the fact that the AIP said this is in an area that we are so thoroughly convinced that this is wrong, we won’t even review it, was in my opinion, wrong.”

“That infuriated Julian Schwinger, and he resigned from the American Physical Society because of that.”

“These empirical results that don’t fit our current picture of the way we think things should be, are an opportunity to challenge the way we think, not a reason to object it as bad, junk science.”

“There exists a huge gap exists between a new scientific discovery and useful engineered systems.”

“We should not speculate wildly, in my opinion, we should manage expectations.”

“Science is the tool to understand.”

“I don’t know if this will have any impact on energy production, I think it has the potential to. In fact, maybe within a year or two, these other engineered systems that are being promoted in Greece and Italy may show that there is a viable energy opportunity, maybe not.”

“When people ask me about Rossi’s work from Italy, or this company in Greece, that are saying that they’re going to put out HVAC units based on low-energy nuclear reactions, they ask me my opinion, I say, the beauty of it is, my opinion in insignificant.”

“They are saying they are going to put this on the market. There is even talk of selling them through major retailers. If they provide products to the market, and it doesn’t work as advertised, it’s all going to be damaged goods and returned stock.”

“The point is, my opinion doesn’t matter. If they hit the market within the next year or so, let’s see whether they work. If they work as advertised, that’s significant, and if they don’t, well that’s significant too.”

“I don’t really need to take a scientific position in something that’s at the endgame of market delivery, as they claim to be.”

“Research funding needs to become much less dependent on common assumptions and common wisdom.”

“…become much more courageous in general I am certainly delighted to see really visionary places, like many universities, many national labs, many industries like National Instruments taking that objective view …”

“If we ever get to the point where we’re told it’s a pariah science and we can’t go there, that’s very detrimental to the future of science.”

Speaking about cold fusion, he said “It’s one of the most interesting things I’ve ever seen.”

Q&A follows, with many more GREAT quotes, though the audio goes in and out. The video ends abruptly, in mid-sentence.

Related Links

Robert Duncan interview on Ca$h Flow: “Public investment means public ownership” by Ruby Carat February 6, 2011

Political Support for Cold Fusion in an Election Year by Ruby Carat May 6, 2012