Francis Tanzella on the Cold Fusion Now! podcast

The Cold Fusion Now! podcast hosts Dr. Francis Tanzella, Program Manager of Low Energy Nuclear Reactions (LENR) at SRI International, just retired, and now a private LENR consultant.

After earning his Ph.D in chemistry from UC, Berkeley, and studying Electrochemistry as a post-doctoral at the University of Pennsylvania, he worked as a chemist at DuPont.

Dr. Tanzella joined SRI in 1986 and helped develop the low energy nuclear reactions (LENR) electrochemical and calorimetry programs there using electrochemical techniques to monitor chemical reaction rates including electrical, electrochemical, and acoustic stimulation of the PdHx system to yield LENR processes in solids.

In addition Dr. Tanzella has used different experimental nuclear measurements to determine the presence or absence of nuclear particles during LENR. He has hosted many other LENR researchers in attempts to reproduce and understand their processes and devices.

Dr. Francis Tanzella talks with Ruby on episode 17 of the Cold Fusion Now! podcast about the fate of the SRI program, giving his assessment of the viability of the Brillouin Hot Tube as a technology.

Listen at or subscribe in iTunes.

The September 16 earthquake in Hokkaido, Japan has wrecked the laboratory of veteran LENR researcher Tadahiko Mizuno. A gofundme page has been set up to help pay for replacement of damaged equipment and assessing the building.

Assist the continuation of revolutionary research:



Brillouin Energy Corp. presented its groundbreaking thermal energy technology on Capitol Hill last week. Attendees included Members of Congress, congressional aides, federal government officials, industry representatives, and citizens’ groups concerned with the federal government’s progress on developing clean energy solutions.

“It was great to see that much interest in DC for a true safe green nuclear power technology,” commented Brillouin’s President and Chief Technology Officer, Robert Godes.

Attendees were able to learn about Brillouin’s prototype LENR reactors and hear from a number of speakers, including Dr. Michael McKubre of Stanford Research International (SRI). Brillouin and SRI have entered into a technology research agreement under which SRI is engaged in calibration testing and independent analysis of the Brillouin technology.

As Dr. McKubre noted in a report distributed at the event, “it is very clear that something on the order of four times (4x) and potentially more gain in power (and therefore ultimately energy) was achieved at an impressive and industrially significant operating temperature of around 640°C. To my knowledge this had not been achieved before in the LENR field. The fact that the Q pulse input is capable of triggering the excess power on and off is also highly significant.”

In addition, Dr. Banning Garrett, former Strategic Foresight Senior Fellow at the Atlantic Council, was also present and issued a report detailing the current status of the LENR field and credibility of Brillouin’s claims. As Dr. Garrett noted, “LENR power generation, if realized, has the potential to become one of the technologies for transformation of the global energy system.”

Brillouin’s breakthrough technology is now garnering national and international attention and the company looks forward to working with government and industry leaders to bring this technology to market.

Background on Brillouin
Brillouin Energy Corporation is a clean-technology company based in Berkeley, CA, which is developing, in collaboration with the Stanford Research Institute (SRI), an ultra-clean, low-cost, renewable energy technology that is capable of producing commercially useful amounts of thermal energy.

The Brillouin technology is based on low energy nuclear reactions (LENR). The result is ultra-clean, low-cost, and sustainable renewable energy that doesn’t rely on any type of fossil fuel, chemical, or nuclear fuel. This process produces zero emissions and no solid wastes which pollute the environment.

Brillouin’s technology is a proprietary method of electrical stimulation of nickel metal conductors using a proprietary control system. The process pulses the system to generate excess heat. The excess heat produced is a product of reactions in hydrogen (from water or gas) in the nickel metal lattice. The process is neither fission nor fusion—rather, electrons change protons to nearly-stationary neutrons in the nickel metal lattice, generating heat.

The reactor converts hydrogen into helium, which has slightly less mass—that mass difference creates a large amount of thermal energy without burning any hydrocarbon energy sources. The reactor is very small relative to the amount of thermal energy output, making the technology very clean and efficient with a virtually inexhaustible fuel supply. Brillouin is currently working to scale the heat production up to commercial output levels.
Brillouin has developed TWO systems:

1) The WET™ Boiler, which is being designed to generate heat from 212º to 302º Fahrenheit, and is intended for home heating and hot water use.
2) The HHT™ Boiler, which is being designed to generate heat at 932º to 1,112º Fahrenheit, and is intended for commercial electricity generation.

For more information:
POC: Robert George