Edmund Storms on “Biological Transmutation”

Dr. Edmund Storms describes an application of the cold fusion effect transmutation.

A Periodic Table
A Periodic Table organizes all the matter known to humans.
Transmutation is a process of one element turning into another element which, by definition, is a reaction involving nuclear particles called protons.

Elements describe the types of matter that exist in the physical world and are organized in charts like the Periodic Table.

An atom is the smallest piece of matter that can still be called an element. Elements combine to form molecules and the matter we see around us.

The research of Ukrainian scientists, including Professors Vladimir Vysotskii and A. Kornikova, has revealed biological organisms, such as various forms of bacteria, that have the ability to initiate nuclear reactions with their environment, including radioactive materials like cesium, which they transmute to stable, non-radioactive elements.

This application may offer an avenue for ridding the planet of the thousands of tons of radioactive waste that presently pollute the planet.

************************************************************************

Supporting Links

Short Course on Nuclear Transmutation 16th International Conference On Condensed Matter Nuclear Science from [ISCMNS]

Successful Experiments On Utilization Of High-Activity Nuclear Waste In The Process Of Transmutation In Growing Associations Of Microbiological Cultures by V. I. Vysotskii, V. N. Shevel, A. B. Tashirev, A. A. Kornilova 2003 [.pdf from LENR.org]

Advanced transmutation processes and their application for the decontamination of radioactive nuclear wastes by A. Michrowski Proceedings 2nd International LENR Conference [.html 1996]

Biological TransmutationsBiological Transmutations by C. Lewis. Kervran 1980. Reviewed by Eugene Mallove from Infinite Energy

From the Review:
Kervran’s thesis is that the transmutation of elements, in particular by reactions among the first few dozen of the periodic table, occurs regularly in biological systems—both in microbes and in multicellular organisms such as human beings. Transmutation is inherent to biology.

Edmund Storms on “Transition”

The graph of the Oil Age shows a thin blip in geological time with an Era of Cold Fusion for the future – and a “little” space between them.

Oil Age and the Era of Cold Fusion
The Oil Age is a blip. Cold fusion can take humanity beyond what can be foreseen.

The transition from dirty fossil fuels and today’s dangerous nuclear power plants into clean cold fusion will entail the dismantling of an entire infrastructure core to the economy and culture of the world, and particularly for the Western nations.

The scale and reach are staggering.

What would a transition narrative look like? Edmund Storms, LENR researcher and author of The Science of Low Energy Nuclear Reaction has thought about these issues for two decades, and has some compelling scenarios.

We spoke with Dr. Storms this past August and this is what he had to say on “Transition”.

Related Links

Oil Age lasted a century; Era of Cold Fusion to fuel millenia by Ruby Carat from Cold Fusion Now October 19, 2011

The Science of Low Energy Nuclear Reaction by Edmund Storms from World Scientific Books

Edmund Storms Kiva Labs YouTube channel

Edmund Storms on the Rossi device: “There will be a stampede.” portions of James Martinez March 1 interview transcribed by Ruby Carat from Cold Fusion Now March 4, 2011

The Ramifications of Free energy.

How did we manage to become this many?

What changed?
We discovered a magic energy source. Fossil Fuel. To be precise, Oil. And the oil is going away.
Numerous sources are adamant that Peak oil has been reached.
None of this should raise eyebrows by now.

But what is the connection between Oil and population?

“In their refined study, Giampietro and Pimentel found that 10 kcal of exosomatic energy are required to produce 1 kcal of food delivered to the consumer in the U.S. food system. This includes packaging and all delivery expenses, but excludes household cooking).20 The U.S. food system consumes ten times more energy than it produces in food energy. This disparity is made possible by nonrenewable fossil fuel stocks. “

from here.

In other words each calorie of food we eat is produced using 10 calories of oil.
We eat oil.
This has enabled us to breed prolifically.
Now, if we never found safe nuclear energy the Business as Usual scenario of the Limits to Growth team would play out.

And this is what the Business as Usual graph looks like.

So what would happen if we had copious amounts of energy?
Well for starters we could extract phosphorus from ocean water.
Phosphorus is one of the limiting factors, due to its position in Adenosine triphosphate, ATP, the energy carrier of all living organisms. It so happens that all the rich deposits of Phosphate are depleted. Lower grades of ore require more energy of remove the “other stuff”.
We could also continue industrial farming which is now in jeopardy because we shan’t have anything to fuel our Headers.

All this too has been modeled by The Report.
Here is what happens if we double our resource base.

Look what happens to pollution. Look too at the steep downward slope of population. This is not ideal.

No folks.

Now that we have an infinite amount of energy, population pressure is going to force us to leave this gravity well. We have to cut the umbilical cord.

But all is not Buck Rogers of Hollywood, or even Star Wars. As a matter of fact Hollywood is not an authority on the colonization of space.

Dr Gerard K O’Neill is or rather, was.

He asked his students “Is the surface of a planet the right place for manufacture?” “No.” And took it from there.

This is what they proposed.

We are going to do what we have always done when we have used up the possibilities of one geographical location.

We are going to move on.
This time we are going Up.

Love it or hate it, we have no choice.

I Want To Believe

A Special Report Renewable Energy Resources and Climate Change Mitigation SRREN by the Working Group III of the Intergovernmental Panel on Climate Change IPCC “presents an assessment of the literature on the scientific, technological, environmental, economic and social aspects of the contribution of six renewable energy resources to the mitigation of climate change. It concentrates “on the role that the deployment of RE technologies can play within such a portfolio of mitigation options.”

The assessment produces a best case scenario projection of 77% of of global primary energy from renewable sources by 2050. The Summary for Policymakers presented the numbers of current Renewable Energy RE sources. A graphic shows the total global primary energy supply of 492 Exajoules for 2008 and its distribution of energy by source.

image41_global_primary_energy_distribution
Figure SPM.2: Global Primary Energy Distribution 2008

Biomass contributes the largest share of the RE contribution, but 60% of that comes from “traditional” biomass.
“Traditional” biomass generally means the burning of wood is the primary source of energy for billions of people and contributes to deforestation, loss of wildlife habitat, and poor air quality.

On a global basis, it is estimated that RE accounted for 12.9% of the total 492 Exajoules (EJ) [5] of primary energy supply in 2008 (Box SPM.2) (Figure SPM.2).

The largest RE contributor was biomass (10.2%), with the majority (roughly 60%) being traditional biomass used in cooking and heating applications in developing countries but with rapidly increasing use of modern biomass as well.[6]

Hydropower represented 2.3%, whereas other RE sources accounted for 0.4%. [1.1.5]

In 2008, RE contributed approximately 19% of global electricity supply (16% hydropower, 3% other RE) and biofuels contributed 2% of global road transport fuel supply.

Traditional biomass (17%), modern biomass (8%), solar thermal and geothermal energy (2%) together fuelled 27% of the total global demand for heat. — SRREN

Assuming bio-fuel crops like corn, sugar, and palms are within the other portion of the biomass contribution to energy, then doubling the contribution of this renewable source could generate possibly 8% of total primary energy demand.

Palm Oil plantation removes virgin forest.
Palm Oil plantation removes virgin forest in Sarawak. Photo: Mattias Klum.
However, doubling the amount of sugar and palm plantations will take virgin forest, home to the last great wild mammals, themselves near extinction, and clear-cut habitat to plant monoculture crops. Cropland re-directed to supply bio-fuels can take farmland from food, causing shortages and higher prices. Recently advanced chemically synthesized bio-fuels like algae require lots of water for growing.

Hydropower takes second largest share of RE contribution to primary energy supply.
Hydroelectric power generates 2% of the global primary energy. Suppose that doubling the number of dams globally doubled the hydropower contribution to the total primary energy supply to a 4% share.  What effects would this have?

Biggest dam in the world in Brazil.
Brazil gets 85% of its electricity from hydropower, and shares the largest hydroelectric dam in the world with Paraguay.

A five-dam project in Chile recently approved will change the Patagonian wilderness landscape by carving roads through wilderness to construct power lines, “drown 14,000 acres, require carving clear-cuts through forests, and eliminate white-water rapids and waterfalls that attract ecotourism.” Here in Northern California, efforts continue to succeed to un-dam the Klamath River, which has decimated salmon populations, though the recent victory by Native peoples, environmentalists, fisherman, and miners has yet to see a timetable for actual de-construction.

A greater percent of RE contributed to electricity alone, with 16% generated by hydropower.

Direct solar energy generated 0.1% of total global primary supply in 2008.
Doubling the contribution of solar energy would produce a 0.2% share, still a miniscule amount of the total.  “The technical potential for solar energy is the highest among the resources,” the report stated. Then,

“Factors such as sustainability concerns [9.3], public acceptance [9.5], system integration and infrastructure constraints [8.2], or economic factors [10.3] may also limit deployment of renewable energy technologies.”

All of these choices viable for small scale use. But these traditional RE technologies will need to deeply expand into a finite and sensitive environment disrupting ecosystems and economies with negative effects if they are to provide a primary energy supply.

Renewable energy continues to grow with relatively small gains in total primary energy supply.
Interestingly, nearly half of the new electricity capacity generated from 2008 to 2009 was generated by renewable energies, but it hasn’t made much of a difference in an overall cleaner energy consumption.  Primary energy supply is dominated by fossil fuels, and peak oil has changed production and consumption of fossil fuels at all levels.

Renewable energy accounts for just under 13% primary energy supply.

Although, according to the SRREN report,  RE capacity continued to grow rapidly in 2009 compared to the cumulative installed capacity from the previous year distributed as:

wind power (32% increase, 38 Gigawatts (GW) added),
hydropower (3%, 31 GW added),
grid-connected photovoltaics (53%, 7.5 GW added),
geothermal power (4%, 0.4 GW added), and
solar hot water/heating (21%, 31 GWth added).

Biofuels accounted for 2% of global road transport fuel demand in 2008 and nearly 3% in 2009.

The annual production of ethanol increased to 1.6 EJ (76 billion litres) by the end of 2009 and biodiesel to 0.6 EJ (17 billion litres) [1.1.5, 2.4, 3.4, 4.4, 5.4, 7.4].

Of the approximate 300 GW of new electricity generating capacity added globally over the two year period from 2008 to 2009, 140 GW came from RE additions.

Bio-fuels increased 50% in one year, but producing this bio-fuel has taken farmland away from food possibly contributing to higher food prices.  Yet it’s still only a mere 3% of global transport fuels.

The report states that wind energy, which in 2008 provided 0.2% of total global primary energy, increased capacity globally by 38 Gigawatts, a 32% gain in 2009. Solar power increased by 53%. But when the share is still less than 1% of total power generated, the gains are not so effective overall.

The SRREN summarizes the various scenarios for RE growth.

“A significant increase in the deployment of RE by 2030, 2050 and beyond is indicated in the majority of the 164 scenarios reviewed in this Special Report[11].

In 2008, total RE production was roughly 64 EJ/yr (12.9% of total primary energy supply) with more than 30 EJ/yr of this being traditional biomass.

More than 50% of the scenarios project levels of RE deployment in 2050 of more than 173 EJ/yr reaching up to over 400 EJ/yr in some cases (Figure SPM.9).

Given that traditional biomass use decreases in most scenarios, a corresponding increase in the production level of RE (excluding traditional biomass) anywhere from roughly three-fold to more than ten-fold is projected.  The global primary energy supply share of RE differs substantially among the scenarios.

More than half of the scenarios show a contribution from RE in excess of a 17% share of primary energy supply in 2030 rising to more than 27% in 2050. The scenarios with the highest RE shares reach approximately 43% in 2030 and 77% in 2050. [10.2, 10.3]”

We will have to double the power generated by a mix of RE sources many times over to reach the highest projection of 77% of our energy supply from RE, or, drastically reduce what we are currently using.  And 27% of primary energy supply coming from RE is too little too late.  Scaling up the supply of RE technologies such as biomass, hydro and solar have broad impacts that will inhibit this ability to grow.

Nevertheless, assuming there is no “technical barrier”, then it’s possible to continue to make these gains. Given these gains though, the ease of integrating renewable energy resources into existing systems of fossil fuels “varies” and is generally site specific “depending on region, characteristics specific to the sector and the technology.”

“As infrastructure and energy systems develop, in spite of the complexities, there are few, if any, fundamental technological limits to integrating a portfolio of RE technologies to meet a majority share of total energy demand in locations where suitable RE resources exist or can be supplied. However, the actual rate of integration and the resulting shares of RE will be influenced by factors, such as costs, policies, environmental issues and social aspects. [8.2, 8.3, 9.3, 9.4, 10.2, 10.5]“, the report states.

“Costs associated with RE are expected to go down” according to the report.  But it appears that costs given do not take into account several factors.

“The levelized cost of energy represents the cost of an energy generating system over its lifetime; it is calculated as the per-unit price at which energy must be generated from a specific source over its lifetime to break even. It usually includes all private costs that accrue upstream in the value chain, but does not include the downstream cost of delivery to the final customer; the cost of integration; or external environmental or other costs. Subsidies and tax credits are also not included.”

One of those costs is associated with transporting energy throughout a grid as in the transmission of centrally-generated electrical energy.

TREC-Map-en
European "Smart" Grids

New RE sources require investment in next-generation grid.
Our current infrastructure of power delivery was built by a previous era for a specific technology of hydrocarbons burned at a central location in great quantity to generate electricity that is then carried over long distances to power cities, suburbs, and industrial parks.  Neglect, coupled with the patchwork nature of joining technologies together from previous centuries, have left the US electrical grid failing in its attempt to provide over-capacity production.

In “Northwest power surplus may halt wind energy“, the Associated Press’ Tim Fought reports that surging rivers from record rain in the Northwest US have hydroelectric dams at maximum production of electricity that they effectively can’t stop without flooding regions upstream, and apparently cannot sell.

The Bonneville Power Administration has announced “its intentions to curtail wind power until the grid has more capacity, in a move likely to cost the industry millions of dollars.” They have “run out of capability to sell the surplus electricity, store the water or shut down gas, oil, and nuclear plants – leaving wind farms the unfortunate victims.”

Growth of wind power
Growth of wind power in the US Northwest is exponential.

Clash of technologies from previous eras impedes deployment of new RE sources.
Many of the wind farms in the Northwest US were built using programs that provide tax credits – only if the operation is producing electricity. Not operating over a three-month period could cost wind farms “as much as $50 million.” If forced, these utilities that use wind farm energy will litigate over “antitrust and market manipulation laws”, the AP report continued. “The action reflects difficulty in integrating the young wind industry into a power grid that dates to the Northwest dam-building campaign that began in the Depression and kicked into high gear after World War II.”

This decision follows a Northwest Power and Conservation Council study that estimates wind power could more than double by 2025, according to another AP report “Northwest wind power could double, cause grid problems“. The council is charged by the President with “developing long-term power plans that balance the region’s energy and environmental needs”.

Wind power in the Pacific Northwest can currently “generate a peak output of about 6,000 Megawatts, or the equivalent of 15 good-size natural gas-fired power plants …… most added in the past five years” and could add “another 5000 to 10,000 Megawatts of wind capacity by 2025.”

I want to believe that renewable energy can be a primary energy source, but rapidly deteriorating world affairs have not yet swayed the biggest consumers to forsake hydrocarbons and adopt renewable energy. Nor has it stopped the developing hardware infrastructure under construction elsewhere.  Fossil fuels have a century of history and built a colossal reality of cement and steel.  The numbers for RE contributions are low and successive doublings of output from RE seems unlikely.

There is a viable alternative to traditional renewable energy.
Breakthroughs in low-energy nuclear reaction LENR science have achieved a major advance in power generation technology. Clean, energy-dense commercial devices based on LENR are set to enter the market, perhaps within the year.

LENR energy reactors create power using small amounts of hydrogen and metals like nickel, palladium, and others, both plentiful on Earth to create large amounts of energy, much more than burning hydrocarbons.  One of the main components in H2O or water, there is enough hydrogen in the oceans to provide global energy for tens of millions of years. Metals are also abundant over the planet. Nickel is the fifth most common element on Earth, including the Earth’s core of iron and nickel.

Andrea Rossi and Energy Catalyzer
New LENR technology can be adopted quickly throughout the planet, empowering local communities to better control their own energy source.

This ultra-clean technology could replace radioactive nuclear fission assemblies one-for-one generating power at a centralized location and delivering at a distance, but a new 1 MW LENR reactor called the Energy Catalyzeris relatively small, being only 3 x 3 x 2 meters”  making the big attraction to LENR reactors the ability to be off-grid, allowing both communities and individuals an independent, sustainable lifestyle with greater local control over their own energy supply.

Currently, there is a non-0% contribution from LENR reactors to global primary energy supply, for somewhere in the world, there are purportedly 97 Energy Catalyzers steaming forth, and there are many more labs around the globe testing LENR reactors of their own.

In the space of twenty years, a digital revolution occurred across the planet.  We believe, whenever the first commercial devices are available, that the energy revolution has the potential to transform our world with clean energy in less than half that time, and most certainly well before 2050.

Cold Fusion Now!

Supporting Links:

IPCC publishes Special Report on Renewable Energy Sources and Climate Change Mitigation Special Report on Renewable Energy Sources and Climate Change Mitigation’ (SRREN)

National Geographic blog When is objectivity not enough?

Industrial Fuel and Power blog Brazil in hot water

Between the Poles European Smart Grids Will Require 500 Billion Euro

Bonneville Power Administration Wind Power

Pure Energy Systems News Ampenergo Amps Up Rossi’s Energy Catalyzer in America

No fear of radiation from cold fusion

[latexpage]
This article organizes information about radiation in three sections.

1 Difference between radioactive materials and radiation.
2 Types of radiation emitted by nuclear processes.
3 No dangerous radiation in cold fusion.

1 Difference between radioactive materials and radiation.
Today’s nuclear fission reactors are more than a poor choice for a primary energy source because of the growing risk of contamination by radioactive materials, which can emit harmful radiation. Humans are not ready to take the responsibility for disaster that could last for geological time, when the amount, and type, of radioactive fuel used in these reactors has the potential to create dead zones for hundreds, if not tens-of-thousands of years.

Why go down this path when there exists an alternative ultra-clean nuclear power? Low-energy nuclear reactions LENR, or cold fusion, is nuclear power from hydrogen, the most common element in the universe, with oceans of it here on Earth. Cold fusion does not use radioactive fuel. Cold fusion does not create harmful radioactive waste. The nuclear reaction occurs inside a tiny piece of metal, like palladium or nickel, in a small device that sits on your tabletop.

Radiation is all around us, everyday, and some radiation of certain kinds can be good and healthy, while other radiation, or too much of the good kind, is bad. For instance, too much solar radiation can cause burns that lead to skin cancers later in life, while too little causes a vitamin D deficiency.

And all radiation is not alike. Of the sunlight reaching Earth’s surface, the ultra-violet portion can burn the skin while the radio-wave portion appears to have left life at the surface unaffected. Both sunlight and X-rays are forms of radiation that are created by nuclear and atomic reactions. But some materials spontaneously and naturally emit radiation, and they are called radioactive.  Here is a nice chart about the radiation around us and dosage.

Radioactive materials contain particles of atomic elements that are unstable, and decay, emitting electromagnetic radiation, or photons, as well as other particles, which may themselves also be radioactive.

Radiation describes the particles and photons emitted by a radioactive material.

Hydrogen and its Isotopes
Hydrogen and its Isotopes
An example of a radioactive material and the radiation emitted from it is given by the simplest element hydrogen. The element hydrogen H is composed of one proton and one electron. Hydrogen has two isotopes, deuterium $^{2}H$ and tritium $^{3}H$. Isotopes are atoms that have extra neutrons in their nucleus. Deuterium has have one extra neutron, making a total of two nucleons, while tritium has two extra neutrons, making a total of three nucleons.

While hydrogen $^{1}H$ and deuterium $^{2}H$ both are found naturally on Earth in abundance, tritium is not, for tritium is unstable, and decays with a half-life of about 12 years, meaning there is only half as much material left as there was 12 years earlier. This decay characterizes radioactivity.

Tritium is an example of a radioactive particle. During radioactive decay for tritium, the nucleus of the tritium atom, called a triton, which has one proton and two neutrons, turns into a Helium-3 atom $^{3}He$, an electron, and another tiny energetic particle called a neutrino, all releasing 18.6 keV of energy.[1]

A triton has one proton and two neutrons. The nucleus of the $^{3}He$ has two protons and one neutron. During radioactive decay of the tritium atom, one of the original neutrons in the triton turned into a proton, along with creating an electron and a neutrino in a process called Beta decay, written β−.

Beta decay
Beta decay
Beta decay describes when an electron, called a beta particle, and a neutrino fly out of a neutron, leaving a proton in its place. The radioactive material is the tritium, and the radiation is the electron and neutrino. Many elements that have an abundance of neutrons are radioactive this way, and sometimes decay splitting into two smaller atoms, naturally fissioning.

Electrons are usually thought of as carrying electrical current to power our appliances. But a large charge of current can be deadly. A beta particle (electron) will fly out with a varying kinetic energy averaging 5.7 keV. [1] This particle is incapable of penetrating the skin. External sources of beta decay from tritium will not harm the body.

But if a radioactive particle is inhaled or ingested, then beta-decay can cause damage to the cells of the body. The radioactive particle will eventually decay and emit a Beta particle that can then collide with internal tissue, perhaps ionizing the atoms in cells. If the Beta particle hits a DNA molecule, lasting genetic consequences can ensue.

Exit sign is powered by tritium.
Tritium and beta decay is used to light red Exit signs and glow-in-the-dark watch hands.
As long as you don’t breathe it in, or eat it, tritium decay poses little threat to humans and tritium is used in devices such as betalights, which use the electrons emitted by tritium just like electrons that provide electrical current, to provide power to stand-alone illuminated night signs, as well as provide illumination for watches.

There is little naturally occurring tritium here on Earth because most of it has decayed away. Tritium is manufactured for commercial use and for use in hot fusion reactors selling for \$30,000US a gram.[1]

Tritium is not used in cold fusion research. Cold fusion cells use hydrogen $^{1}H$ and deuterium $^{2}H$, both cheap, plentiful, and evenly distributed around the earth in sea-water. No radioactive fuel is used in the cold fusion process.

2 Types of radiation emitted by nuclear processes.
In the conventional nuclear reactions of fission and hot fusion, the main types of radiation seen are particles like alpha particles, beta particles, and electromagnetic radiation such as gamma rays or x-rays. The three main types of radiation are named in the order that they were discovered and after the first three letters of the Greek alphabet. Conventional nuclear fission which relies on a chain-reaction, also produces neutrons.

Alpha particles are helium nuclei. That is to say that alpha particles are the nucleus of helium atoms, consisting of two protons and two neutrons $^{4}He$. Alpha particles are emitted by the natural radioactivity of the heavier elements and their isotopes. Alpha particles are larger clusters of nucleons and generally have low energy that a piece of paper will shield against alpha particles.

Beta particles β−, are electrons that are emitted during beta decay. Beta-emitting isotopes can have a half-life as long as $10^{16}$ years or as short as milliseconds. Beta particles can also be positively- charged positrons denoted β+. Beta particles can be stopped by ”a few millimeters of aluminum”.[2]

Gamma radiation is made up of light, or high-energy photons, that have an extremely small wavelength. They are similar to x-rays, with gamma rays carrying more energy. ”X-rays result when electrons return to a lower energy by emitting electromagnetic radiation and gamma radiation result when particles in the nucleus return to a lower energy.” [1,153]

Electromagnetic spectrum is composed of radiation.
The light we see is radiation; radio waves are radiation; the whole electromagnetic spectrum is radiation -- of photons.

Both gamma radiation and x-rays will penetrate the body easily and they can be harmful to living tissue.  Only shielding made of lead will stop gamma radiation.

Some nuclear reactions can also create neutrons. Neutrons can be dangerous as they can penetrate the body, ionizing cells and creating genetic damage.

3 No dangerous radiation in cold fusion.
While no source of energy is 100% clean, cold fusion ranks cleaner over oil, gas, coal, today’s nuclear fission, hot fusion, solar and wind. Solar and wind are renewable sources, but the materials and manufacturing of solar panels and wind turbines given their energy density don’t compare to cold fusion.

First of all, LENR is a process of that does not involve today’s nuclear fission power designs, so there is no chain-reaction. A cold fusion cell will not ”runaway” like critical masses and fission bombs. Cold fusion energy devices will turn on and off when you want them to.

Edmund StormsEdmund Storms, a nuclear scientist who has researched cold fusion for over two decades wrote a survey of the field called The Science of Low Energy Nuclear Reaction. Published in 2007, it is a technical summary of results for a scientific reader. In it, there are clear statements about the lack of radiation from cold fusion cells.

This table from Storms’ Science provides the general experimental results regarding radiation from LENR experiments.

Table 14 Expected but missing behavior. [1,176]
1. Gamma emission is rare.
2. Neutron emission is rare.
3. Alpha emission rate is not consistent with accumulated helium.
4. X-rays expected when a significant alpha flux is absorbed are missing.
5. The second nuclear product resulting from transformation is frequently missing.

A listing of the reported studies showing radiation detected in LENR experiments can be found in Table 11 of Storms’ Science[1]. Each entry is listed with radiation type and strength, along with the kind of cell that produced it. He writes:

Fortunately none of this radiation is a health hazard nor is it easy to detect outside of the apparatus, which makes the process sate to study and safe as an eventual source of energy.” [1,105]

Quite simply, the type and quantity of radiation seen in today’s nuclear power does not show up LENR.

Cold fusion cells do not behave at all like conventional theories of nuclear reactions dictate. The fact that dangerous levels are missing from this reaction was in part responsible for many scientists dismissal of this as a nuclear effect. To quote Nobel laureate Julian Schwinger ”The circumstances of cold fusion are not those of hot fusion.”

Infinite Energy magazine published an FAQ containing this question: Why doesn’t cold fusion produce dangerous ionizing radiation and neutrons?

Nobody knows for certain why the primary signature of cold fusion is excess heat, not deadly radiation. Nevertheless, many LENR theorists have put forth very intriguing proposals for the mechanism of these reactions. There are, in fact, many dozens of competing theories smaller number of which are very well fleshed out. The exact nature of the LENR reactions is one of the many unsolved scientific mysteries surrounding them. Some scientists think that because the effect does not produce intense radiation, it cannot be a nuclear process. Others say the energy is produced, but then somehow absorbed by the metal lattice either as high frequency vibrations, or through coherent processes in which many delocalized vibrations are involved.” [7]

LENR devices do not have any appreciable radiation from alpha particles, beta particles, high- energy neutrons, and there is no danger of a runaway chain reaction. What about the x-rays and gamma radiation, those high-energy photons that could pose a risk to biological life? Storms writes:

”Most X-radiation will be absorbed by the apparatus, thereby making its detection unlikely.”[1,153]

Andrea Rossi’s LENR-powered hot-water boiler, the Energy Catalyzer ECat, is expected to be the first commercial application of this new energy science and uses micro-sized nickel particles infused with hydrogen gas to initiate power production. The ECat is currently being tested and evaluated at the University of Bologna in Bologna, Italy. This device will be commercially implemented in a factory in Athens, Greece, where it will undergo further tests on its safety in an industrial setting.[3]

Andrea Rossi's E-Cat
Andrea Rossi's E-Cat prototype. Photo: Daniele Passerini

For wide-spread use of cold fusion technology, these devices must be safe for the public. This was noted by Jed Rothwell in his Cold Fusion and the Future.

Some people fear there may be a hidden, long term threat to the health of people who work in close proximity to cold fusion reactors. So far, nobody has detected dangerous levels of x-rays or other emissions from a cold fusion cell. The autoradiographs prove that cold fusion does produce low levels of radioactivity, but the levels are so low that scientists have difficulty detecting them with sensitive instruments. Compared to the radiation from televisions and the natural background of radiation from space, radon and other sources, cold fusion radiation seems likely to remain so low as to be nearly undetectable. Still, cold fusion might conceivably produce some unknown form of radiation or some other deleterious effect. We will have to make sure this is not the case, by exposing rats and other laboratory animals to unshielded cold fusion reactors, and by carefully monitoring the health of the first group of people who work with the reactors every day.“[4]

On Rossi’s device, ”about 50 kilograms of lead shielding, about 2 centimeters thick, protects against any gamma radiation.”[6] During an open Q&A after the NyTeknik interview, the question of gamma radiation from the ECat was posed to inventor Rossi by a member of the public, Goran Ericsson. ”If no gammas are observed, what is the reason to believe nuclear reactions are involved?”

Andrea Rossi: We observed gammas under the 300 keV range. We did not find, so far, the couple at 180 degrees at 511 keV, and the research we are continuing with the University of Bologna is aimed also to better probe the specter of the gamma produced. It will take some month of research, after which we will able to better understand the theory at the root of the thermal effect.

We have to calculate also the recoil energy, integrated with the kinetic energy we produce. We want to correlate the thermal effect with the gamma specter we will define. We also are continuing to analyze the atomic and isotopical transmutation, to correlate it to the gamma and to the thermal effect. I want to know if Cu-59, 60, 61, 62 decay by electron capture, instead of beta plus emission; if so a very interesting consideration can be derived.

This a very difficult research we are investing on (my money). And, at last, if we will not find high energy gamma and 511 keV couples, well, we will have to think about a new rule. It would not be the first time: they have digged a big hole, there in Geneva, to understand things, and they are finding things by the classic physics could not happen, particle that by the classic physics could not exist. But those things, evidently, are not good Physics students, so they insist to exist. Just read the ”Nuclear Models” of Greiner Maruhn to get a taste of this.“[5]

Speculating on what could happen if Rossi’s device broke, Hank Mills of Pure Energy Systems news wrote:

There could potentially be a very brief spike of radioactivity for a moment if the vessel cracked or failed, but the venting of the hydrogen gas would immediately end the nuclear reactions taking place and any production of radioactivity.” [4]

An additional batch of questions from Ny Teknik’s readers was answered by Mr. Rossi, some of which addressed the question of radiation from beta decay and radioactivity.

Peter Ekstrm: In the fusion of a proton with Ni-58 a substantial activity of Cu-59 is formed. Cu-59 decays with a half-life of 82 seconds by beta+ decay. In the Focardi and Rossi article it is stated that: ”No radioactivity has been found also in the Nickel residual from the process”. Considering the very high activity of Cu-59 that is produced, it is surprising that no activity is detected. Even ten half-lives after the end of a run the activity should be of the order of 1013 Bq, which is not only easily measurable (with a detector far away from the source) but also deadly for everybody present in the room! (Could you explain?)

Rossi: No radioactivity has been found in the residual metals, it is true, but the day after the stop of the operation. In any case you are right, if 59-Cu is formed from 58-Ni we should have the couples of 511 keV at 180 and we never found them, while we found keV in the range of 100-300 keV. I think no 59Cu is produced, I suppose only stable Cu is produced from the transmutation of the isotopes 62Ni and 64Ni. I desume this from what we find after the operations. Your observation is correct.

Cold fusion technology is just beginning to emerge from a science into a technology. Much is still unknown about the science, and further testing will be taken over the next several years to ensure the safety of this technology. To date, cold fusion devices have not produced any appreciable dangerous radiation like that of today’s nuclear fission reactors. Scientists who have worked in this field for the past two decades are healthy and safe.

More importantly, LENR reactions produce energy that is cleaner than any source of power used today. Whether it’s hydrocarbons like oil, gas, or coal, or renewable technologies such a solar and wind, the power of cold fusion lies in its incredible energy density, a nuclear power from hydrogen and greener than today’s nuclear fission power plants.

References:

1 The Science of Low Energy Nuclear Reaction by Edmund Storms World Scientific 2007

2 http://en.wikipedia.org/wiki/Beta_particle

3 http://en.wikipedia.org/wiki/Tritium

4 Jed Rothwell: Cold Fusion and the Future Part 1 – Revolutionary Technology http://www. infinite-energy.com/iemagazine/issue12/coldfusion5.html

5 Welcome Worry-Free Nuclear Power: Rossi’s Energy Catalyzer by Hank Mills Pure Energy Systems news

6  36 more ques- tions asked by the readers of NyTeknik http://www.nyteknik.se/nyheter/energi_miljo/energi/article3126617.ece

7  Why doesn’t cold fusion produce dangerous ionizing radiation and neutrons? Infinite- energy FAQ http://www.infinite-energy.com/resources/faq. html#Q21

8 UC Davis Training in Radiation http://www.research.ucdavis.edu/home.cfm?id=mrt,13,1137,1139

Dangers of nuclear fission plants exposed; stand in contrast to cold fusion

Cold fusion is called low-energy nuclear reactions and though it is a nuclear process, cold fusion is nothing like the nuclear fission reaction that powers today’s nuclear plants.

  • Low-energy nuclear reactions describe a 21rst century process of extracting energy from atoms involving fractal superwave phonons, quantum waves, and the Heisenberg Uncertainty Principle.
  • In low-energy nuclear reactions, there is no radioactive fuel or toxic metals involved. Energy is created by quantum interactions inside small amounts of nano-sized metals like nickel and palladium infused with hydrogen, the main element in water.
  • Low-energy nuclear reactions do not involve a fission chain reaction.
  • Low-energy nuclear reactions do not produce any of the dangerous fission products seen in current nuclear technology.
  • Low-energy nuclear reactions do not produce radioactive waste. In fact, the effect of transmutations may allow for a process to clean-up existing stockpiles of radioactive waste, “transmuting” them into non-lethal materials.
  • Low-energy nuclear reactions do not require huge power plant infrastructure, but will be scaled small for personal use or large for industrial use. Current prototype cells sit on tabletops, operating at room temperatures.
  • Low-energy nuclear reactions do not have the geo-political impacts of oil and gas. Using a fuel of hydrogen from water, access to water means access to fuel, giving communities around the globe true energy security.
  • Low-energy nuclear reactions do not have a history in weapons research.
  • Low-energy nuclear reactions are being developed by young, new-energy companies concerned about the environment and the future of life on Earth.
  • Choose cold fusion for a peaceful next-generation nuclear power.

    Japanese Red Cross
    Donate to the Japanese Red Cross
    International Red Cross
    Donate to the International Red Cross
    American Red Cross
    Donate to the American Red Cross.

    A natural disaster. A human tragedy.

    A 9.0 magnitude earthquake followed by a wall of water over 3 meters high in the open ocean (and a few times higher upon hitting the coast), moving an astounding 800 kilometers per hour. The shock and trauma defies words. Superimpose a nuclear fission plant disaster and the mind is numbed into an empty and quiet desperation.

    How do you prepare any large-scale power facility for that kind of geological event? The short answer is, you don’t. These events have been statistically rare enough that design costs outweigh the remote probability of an extreme event. In other words, a cost-benefit analysis concludes it is not economically feasible to construct facilities to withstand these kinds of extreme events. In some cases, current technology is not evolved enough to respond to the geological conditions.

    Note that this type of extreme event ”had been” statistically rare enough, based on previous data, which of course doesn’t guarantee any future outcome. At some point, the black swan casts a dark shadow, and from the realm of possibility, a probability of one. Thales said, ”The past is certain, the future obscure” in 600BC.

    There is always risk. Yet the amount of risk one takes should be commensurate with the reward. Space exploration is risky, but the rewards, real or intangible, outweigh those risks, and we agree to take those risks to continue expand our physical reach into the universe.

    But some risks are not worth the price. What are some of the elements of nuclear fission technology that contribute to its high levels of risk?

    FISSION FUEL IS RADIOACTIVE
    Fission is the process of splitting large atoms apart into smaller atoms whose combined mass is smaller than the original atom. The missing mass converts to energy. This process begins when a heavy element, like an uranium atom, for instance, absorbs a neutron. Having an extra neutron, it becomes an isotope of uranium, and even heavier. Now unstable, the atom then falls apart into two smaller atoms, releasing heat energy in the process. It is this heat that turns water into steam, which turns a turbine, creating electricity.

    The fission process uses the heaviest elements that exist naturally, like uranium and plutonium. These elements are characterized by their natural radioactivity called radioactive decay. During radioactive decay, alpha and beta particles, and high-energy gamma ray photons are spontaneously emitted. These particles and gamma rays are what make-up the radiation.

    Radiation is dangerous to biological life forms as these particles and photons interact with living tissue at the sub-atomic level, ionizing the atoms in a body. The effects of ionizing radiation can be sickness, cancer, death, and genetic birth defects for generations. There is shielding against this radiation, but when the shielding breaks down, the environment, and people, are exposed.

    An explosion at a nuclear fission power plant can spread radioactive fuel into the environment where, depending on the material, radioactivity can last for decades, or millennia. These particles could then settle in the water tables, in food or clothing, or be inhaled in. The radioactive particles polluting the environment then decay, causing the radiation that is harmful to life.

    Fukushima nuclear fission power plant explosion.
    A building at the Fukushima nuclear fission power plant after an explosion.

    Beyond a nuclear meltdown, or other catastrophic accident, radioactive fuel must be mined, transported, and processed before it’s ready to use, providing ample opportunity to mishandle the toxic metal fuel. The International Atomic Energy Agency IAEA reports in their International Status and Prospects of Nuclear Power, published in September 2010, that ”uranium mining now takes place in 19 countries, with eight countries accounting for 93% of world capacity.” These materials are at risk by those who would make ”dirty bombs”, conventional explosives laced with radioactive material, the purpose of which is to further spread radioactive poisons to biological systems.

    The fuel for nuclear fission plants is a finite resource, geographically located, with all the geo-political ramifications that come with a strategic resource. Currently, the full demand for uranium has not be met by mining, but by recycled materials. According to the IAEA, ”Currently, 35% of uranium needs are covered by secondary supplies – stored uranium or ex-military material – and recycled materials.” Dramatic price rises since 2004 by a factor of 10 anticipate a possible deficit. When industry estimates include low fuel costs, the supply deficit from mining that has been made up by recycled sources must be factored in.

    ACCIDENTS WILL HAPPEN
    Nuclear fission power relies on a process of chain reaction instigated by neutrons. When an uranium atom absorbs a neutron and subsequently splits apart, on average, 2.5 new neutrons are liberated from that reaction. These newly freed neutrons can then be absorbed by more uranium, creating more fission reactions and more neutrons, continuing the self-sustaining fission process.

    The trillions of reactions from all the uranium atoms splitting apart needs moderating. If the reaction goes too fast, and becomes uncontrolled, the fuel will become hot enough to melt. The radioactive liquid mix will form a pool at the bottom of the container, at which point, it can melt through the containment vessels and out into the environment.

    A nuclear fission meltdown can leave a region uninhabitable for centuries. Some materials will remain radioactive for geological time, essentially creating a dead zone for humans, as well as other lifeforms who live on this planet.

    Japan sits in one of the most seismically active regions of the world and, before March 11, had 55 operating nuclear fission plants. Over the last several decades, power plant designs have evolved into structures with maximum safety features for magnitude 7.9 earthquakes, but not 9.0. Every area of the globe has some type of extreme weather or natural threat that could disrupt or destroy a nuclear infrastructure. Earthquake, tsunami, or super-hurricanes can exact a crushing dominance of Mother Nature over human technology. It doesn’t happen often, but when a statistically rare event does occur, the consequences from damaged or destroyed fission power plants can last millennia.

    In the US, there are 104 operating nuclear reactors, 97% of them more than twenty years old, and more than half over 30 years old. This graph from the U.S. Nuclear Regulatory Commission NRC shows the average number of unplanned automatic scrams, or emergency shut-downs per plant for all 104 plants.

    Did lots of fission plants have no unplanned emergency shut-down, and a mere few have many more scrams? The chart doesn’t answer that. All it shows is a non-zero number of automatic emergency shut-downs.

    FISSION REACTORS ARE AGING FLEET
    Worldwide, ”about three quarters of all reactors in operation today are over 20 years old, and one quarter are over 30 years old.”, according to the IAEA, and age appears to be a factor in reactor safety. While newer fission nuclear plants have multiple safety back-up systems, the Fukushima plant in Japan was built in 1971, and had only the diesel generators, sitting above ground, as a back-up. When the back-up diesel generators stopped, a partial meltdown occurred.

    A survey of the age of the nuclear fleet in the United States shows the majority of nuclear reactors are between 20 to 40 years old, the result of successful efforts by concerned citizens to block the building of new nuclear fission plants after Three Mile Island accident in 1979.

    A specially-skilled individual is required to operate, maintain, and troubleshoot the various designs of reactors of this age. Lack of experienced personnel with this decades old technology is a cause for concern in the industry, and nuclear agencies are stepping up recruitment efforts to replace an aging workforce ready to retire. The IAEA reports that countries entering into the nuclear fission power production will have to rely on “their technology providers” for training.

    NO GOOD WASTE DISPOSAL
    Dangers from mining, processing, transporting, and fission reactor accidents are further compounded by back end radioactive waste disposal. Currently, there is no good method for storing radioactive waste generated by fission plants. Depending on the reactor, hundreds or even thousands of kilograms of radioactive fuel is used. Used fuel rods continue to accumulate in larger quantities and needs to be stored for longer time periods than initially envisaged (over 100 years), according to the IAEA.

    This photo showing “temporary storage” of radioactive waste is from the NRC website.

    Radioactive waste disposal in the US. Disaster in the making.
    Nuclear waste disposal in the US is "non-permanent", despite there being no acceptable solution on the horizon.

    In the US, a planned radioactive waste site at Yucca Mountain, Nevada, had a license revoked and will be closed. Finland, France, and Sweden are hailed as ”advanced” in waste storage, with Finland currently constructing an ”exploratory tunnel to disposal depth” in hopes of ”applying for a repository construction license in 2012 so that final disposal can begin in 2020.”

    Beyond storage, some spent fuel is ”reprocessed” for weapons, continuing the intimate link between nuclear fission and weapons research. Reprocessing takes used fission fuel rods and transforms the material into another form, like a powder. This procedure has been criticized for creating a product easier to steal than the original heavy array of fuel rods would be. Reprocessing also makes accounting for the radioactive material much more difficult as small amounts may go missing, and not be noticed for years.

    A GLOBAL NEED FOR POWER
    Look at the top of this page at the Earth at Night montage by NASA. Japan shines bright, indicating a high-technology culture with a need for electrical power. And Japan is not alone.

    Many regions of the world shine just as bright. It is these regions that have had the benefits of petroleum that the unlit regions haven’t had, and due to peak oil, won’t have. Yet all the regions of the world want some form of a technological culture requiring more energy. The US Energy Information Administration predicts a 2.3% increase in world demand for electricity through 2035, using a baseline of 18.8 trillion kilowatt hours generated in 2007.

    Currently coal generates 39% of the world’s electricity [OECD]. As hydrocarbons continue their slide down Hubbert’s curve, new sources of energy are needed, and fission nuclear power plants are being discussed as a solution.

    MORE FISSION NUCLEAR PLANTS ARE BEING BUILT
    ”Nuclear energy from fission produces slightly less than 14% of the world’s electricity supplies, and it is a mere 5.7% of total primary energy used worldwide”, according the IAEA’s most recent International Status and Prospects of Nuclear Power report.

    Yet there are 440 nuclear fission power plants operating today on the planet, creating less than 14% of the electricity supplies. This graph from the US Nuclear Regulatory Commission shows the distribution of nuclear fission power plants around the world.

    Currently, 60 new nuclear fission plants are being built world wide, with a third of them beginning construction in just the last few years. Ten new reactors broke ground in 2008. This increased to 12 new construction starts in 2009.

    The IAEA also reports that 18% of the fission reactors under construction have been under construction for over 20 years.

    ”Of the 60 plants, 11 have been under construction since before 1990, and of the 11 possibly only three are predicted to be commissioned in the next three years. There are a few reactors which have been under construction for over 20 years and which currently have little progress and activity.”

    Asia is a newcomer to nuclear fission technology, but it is this region of the globe that has the highest rate of new construction. Key industries have been ramped up to supply materials and engineering to this young industry.

    ”All 22 of the construction starts in 2008 and 2009 were pressurized water reactors (PWRs) in three countries: China, Repubic of Korea and Russian Federation”, says the IAEA report. China claims the ”capability to produce heavy equipment for six large reactors per year”. The Japan Steel Works (JSW), a maker of key fission reactor parts, had only a few months ago planned to triple it’s capacity.

    This chart from the US NRC shows the number of applications for new nuclear power plants. The US, which had a virtual halt to new fission plant constructions after the 1979 Three Mile Island disaster, also has increased applications for licenses in recent years.

    POWER PLANTS ARE EXPENSIVE
    New construction costs are rising higher than official inflation as commodities increase in nominal value and stricter design constraints are enforced. The permitting and building of a new plant can easily take ten to twenty years which also contributes to higher costs.

    It is currently cheaper to permit and build a natural gas plant than a nuclear fission plant, though this analysis has not taken into consideration the costs of environmental damage in either production or consumption of hydrocarbons.

    From the IAEA Nuclear Technology Review 2010:

    ”The Nuclear Technology Review 2009 reported that the range of cost estimates for new nuclear power plants had grown at its upper end compared to the range of $1200-2500 per kW(e) that had been reported in the Nuclear Technology Review 2006. In the past year, cost estimates remained high…..

    ”The Massachusetts Institute of Technology (MIT) updated a cost study for the USA that it had done in 2003 – its updated overnight cost estimate of $4000/kW(e) is very close to the name of the estimates for north America….. The updated MIT study concludes that, in the USA, the cost of capital will be higher for nuclear power than for coal and natural gas-fired power because of the lack of recent experience and resulting uncertainty among investors. Without this ’risk premium”, nuclear power’s estimated levelized cost of electricity (LCOE) would be comparable to the LCOEs for coal- and gas-fired power, even without fee or taxes on carbon dioxide emissions and even with an overnight cost of $4000/kW(e).”

    The private Citigroup Investment Research, estimated ”overnight costs for generic new nuclear reactors in the UK at $3700-5200/kW(e)”, while costs for new nuclear fission plants in Asia are significantly lower. The NRC IAEA report mentions the Republic of Korea where new reactor costs are $1556/kW(e), allowing Korea to bring ”four new reactors on-line since 2000 and has six under construction.”

    The chart here was supplied to the US Nuclear Regulatory Commission by the Federal Energy Regulatory Commission FERC and shows production expenses, which does not include upfront capital and construction costs. Also, fission fuel costs have risen significantly recently.

    The US Energy Information Administration published this table comparing the relative costs of producing electricity for its Annual Energy Outlook 2011, and it does appear to include a ”levelized” capital cost.

    Robert Alvarez, a nuclear expert from the Institute of Policy Studies, wrote ”A 1997 report for the Nuclear Regulatory Commission (NRC) by Brookhaven National Laboratory also found that a severe pool fire could render about 188 square miles uninhabitable, cause as many as 28,000 cancer fatalities, and cost $59 billion in damage.”

    We find this cost incalculable.

    INDUSTRY SAYS IT CAN’T HAPPEN HERE
    Whether it’s natural disasters or human error, things will go wrong. Looking at the various facts that cause risk, nuclear fission is a poor choice for Earth’s electrical energy source.

    The nuclear fission industry claims a nuclear crisis like what happened in Japan, can’t happen in the US. But Wall Street investment banks said a crash couldn’t happen, and BP claimed they had the technology to deal with anything on the ”horizon”.

    COLD FUSION IS THE BETTER PATH
    There are services to radiation in medical technology, and the natural radiation that exists in our environment allows for the dating of ancient objects from humankind’s early history. But the various factors that contribute to the disservices of large scale nuclear fission plants to generate electricity are overwhelming, and we conclude that fission nuclear power plants are not safe or cost-effective, especially when the ultra-clean alternative of cold fusion exists.

    Cold fusion is called low-energy nuclear reactions and though it is a nuclear process, cold fusion is nothing like the nuclear fission reaction that powers today’s nuclear plants.

  • Low-energy nuclear reactions describe a 21rst century process of extracting energy from atoms involving fractal superwave phonons, quantum waves, and the Heisenberg Uncertainty Principle. Energy is created as converting small bits of mass to energy as Einstein described in his famous equation
  • In low-energy nuclear reactions, there is no radioactive fuel or toxic metals involved. Energy is created by quantum interactions inside small amounts of nano-sized metals like nickel and palladium infused with the hydrogen from water.
  • Low-energy nuclear reactions do not involve a fission chain reaction.
  • Low-energy nuclear reactions do not produce the amount of harmful radiation seen in nuclear fission reactions.
  • Low-energy nuclear reactions do not produce radioactive waste. In fact, the effect of transmutations may allow for a process to clean-up existing stockpiles of radioactive waste, “transmuting” them into non-lethal materials.
  • Low-energy nuclear reactions do not require huge power plant infrastructure, but will be scaled small for personal use or large for industrial use. Current prototype cells sit on tabletops, operating at room temperatures.
  • Low-energy nuclear reactions do not have the geo-political impacts of oil and gas. Using a fuel of hydrogen from water, access to water means access to fuel, giving communities around the globe true energy security.
  • Low-energy nuclear reactions do not have a history in weapons research.
  • Low-energy nuclear reactions are being developed by young, new-energy companies concerned about the environment and the future of life on Earth.
  • For these reasons, we reject current nuclear fission technologies and we support cold fusion as the only viable alternative for ultra-clean next-generation nuclear power from water.

    Japanese Red Cross
    Donate to the Japanese Red Cross
    International Red Cross
    Donate to the International Red Cross
    American Red Cross
    Donate to the American Red Cross.

    Supporting links:

    1. Nuclear Technology Review 2010 International Atomic Energy Agency http://www.iaea.org/

    2. International Status and Prospects of Nuclear Power International Atomic Energy Agency http://www.iaea.org/

    3. United States Nuclear Regulatory Commission http://www.nrc.gov/

    4. NRC Probability Risk Assessment
    http://www. nrc.gov/reading-rm/doc-collections/fact-sheets/probabilistic-risk-asses.html

    5. United States Department of Energy Nuclear Office http://www.ne.doe.gov/

    6. United States Energy Information Administration http://www.eia.doe.gov/

    7. Guide to the Nuclear Wallchart
    http://www. lbl.gov/abc/wallchart/outline.html

    8. The Oil Drum http://www.theoildrum.com/node/3877

    9. Cost of Nuclear Power
    http://nuclearinfo.net/Nuclearpow/WebHomeCostOfNuclearPower

    10. Nuclear Power Costs
    http://www.world-nuclear.org/info/inf02.html

    11. Nuclear Reprocessing: Dangerous, Dirty and Expensive Union of Concerned Scientists
    http:// www.ucsusa.org/nuclear_power/nuclear_power_risk/nuclear_proliferation_and_terrorism/ nuclear-reprocessing.html

    12. Federal Energy Regulatory Commission http://www.ferc.gov/