Cold nuclear fusion: we immediately went our own way

This is a re-post of a modified google-translated article by Sergey Tsvetkov published April 8, 2019 at REGNUM Any use of materials is allowed only if there is a hyperlink to REGNUM news agency.

The prototype of the Soviet prospective cold fusion reactor on deuterated titanium was created in May 1989 by the head of the institute of the USSR Minsredmash NIKIET N. A. Dollezhal. The collapse of the USSR delayed the revolution in global nuclear energy by almost 30 years.

A report by Sergey Alekseevich Tsvetkov, a member of the Coordination Council of the Russian Academy of Natural Sciences on the issue of Cold Transmutation, “My opinion on cold nuclear fusion” at the 30-year-old Cold Synthesis Conference: Results and Prospects held on March 23, 2019 in Moscow.

* * *

Comment REGNUM

Sergey Tsvetkov

Sergey Tsvetkov is a nuclear physicist, a specialist in nuclear reactor physics, the author of a promising project for a cold fusion reactor on deuterated titanium, the development of which began in the Sverdlovsk branch of the Research and Design Institute of Power Engineering (SF NIKIET) of the USSR Ministry of Medium Machine Building.

* * *

“If there was no cold fusion, it should have been invented. ”

My report is devoted to the results that I received in the field of cold fusion in 30 years of work, practically from the very moment when Martin Fleischmann and Stanley Pons announced their discovery on March 23, 1989.

Fig. 1. Solemn rally in Zarechny, Sverdlovsk region on the launch at the Beloyarsk NPP them. IV Kurchatov BN-600 fast neutron reactor in April 1980

How it all began. Here, in the city of Zarechny, it all started when the newspaper “Izvestia” on March 25, 1989 published the article “The Discovery of the Century or …” by a famous international journalist, correspondent for the United States and Great Britain, Alexander Shalnev, in which he spoke about a sensational press. conference at the University of Utah in Salt Lake City, USA.

Fig. 2. A clipping from the Izvestia newspaper dated March 25, 1989 with Alexander Shalnov’s article “The Discovery of the Century or …”


NEW YORK. (Sob. Correspondent. “News”). ABC began its major news release with a report on a press conference held at the University of Utah. What was announced, and in fact – a sensation. According to Briton Martin Fleischmann and American Stanley Pons, they managed to discover a way to carry out nuclear fusion under the simplest conditions.

If this is so, if further experiments confirm the discovery, then a giant step will be made to the long-standing dream of many scientists – to use fusion as a cheap, reliable and almost safe source of energy. The fusion reaction proceeds with light nuclei, and the fission reaction, which is now used in conventional nuclear reactors, is in heavy nuclei. The advantage of fusion as an energy source is that any water abounds in the deuterium used in this process. Another major advantage – the waste of this process is scanty.

The scientists of the world have long been fighting the problem of fusion. According to the Washington Post newspaper, hundreds of millions of dollars have been spent, so that using the most sophisticated and at the same time very cumbersome equipment to create conditions that would resemble those that exist on the Sun in a giant nuclear synthesizer. In the meantime, the result is the following: to carry out such experiments, the energy is spent much more than it is created.

The method of Fleischmann and Pons is extraordinarily simple. This experiment, said the vice-president of the University of Utah, is similar to those conducted by first-year students using two electrodes immersed in a liquid. Scientists themselves say that, according to their forecasts, it will be relatively easy to transform the discovery into a technology that can be used in practical needs – for heat, for example. However, they add, “there is still work to do.”

In American scientific circles, the press conference in Utah did not cause a definite reaction. Attention was drawn to the fact that it was arranged before other scientists were notified of the discovery, and before the discovery report was submitted for publication. It’s unusual.

Secondly, there is a suspicion that the practical benefits of the discovery will be much less than the authors predict. According to Dennis Keef from the University of Berkeley (California), the experiment is worth it to continue on. But, says the scientist, himself a specialist in fusion, it is unrealistic to wait for substantial practical results: after all, the experiments that are conducted still produce a very small amount of heat, which, of course, is not enough to bring boiling water to steam. .

Skepticism, it seems to me, has spread faster than enthusiasm: neither ABC nor other TV companies report on the discovery anymore. Very poorly reacted and print.

A. Shalnev.

Further, a comment was published by Academician of the USSR Academy of Sciences Boris Borisovich Kadomtsev, a well-known specialist in plasma physics and controlled thermonuclear fusion.

The correspondent of Izvestia asked academician B. Kadomtsev to comment on this message. He said:

“The message from New York is, of course, sensational. But the scientific information in it is too small for any definite conclusions. In order for the fusion reactions to occur, the nuclei must come to a very close distance. To do this, they must have a greater relative speed. Therefore, a very high technique is required for an intensive reaction. Very weak reactions can occur under less extreme conditions. For example, neutron generators use a metal target saturated with tritium located at room temperature. This beam strikes a beam of accelerated deuterium nuclei, which with low probability can react with tritium nuclei. The information of the correspondent is not enough to make a conclusion about the reliability of the discovery. It is only clear that if the reaction actually proceeds, then it is clearly weak, and such a process can hardly be used to generate energy. ”

This small article was duplicated in the Pravda newspaper, and then, publications appeared in the Literary Gazette and many others. In April 1989, in the 15th issue of the weekly “Echo of the Planet”, a large article ” “Cold Thermonuclear” — the discovery of the century?” was published; showing what results were obtained.

Fig. 3. The article “Cold thermonuclear – discovery of the century” in the weekly “Echo of the Planet”, No. 15, April 1989

On the basis of these newspaper publications, already in early April our group in the SF NIKIET was involved in the verification of the results. But we immediately went on our way.

At the same time, at the end of April, a “refuting” statement of the American Physical Society is published, and in May a number of tendentious newspaper publications appear, stating that Fleischmann and Pons’ data are incorrect, that they cannot measure heat, that, in fact, there is no tritium, etc. As they say, “all dogs were hanged on them”. They tried, of course, all this time to fight back . An attempt was even made to create the Institute of Cold Fusion for which a lot of money was allocated. However, the institute did not last long and was closed at the end of 1990. By 1991, pressure was exerted on the troublemakers so that Martin Fleischmann returned to Britain, and Stanley Pons had to resign from the University of Utah and move to work in France, having emigrated from the United States.

On the history of Martin Fleischmann and Stanley Pons’ harassment, I wrote an article that was published on December 12, 2017 in IA REGNUM entitled “About the pseudo-scientificness of cold fusion: in defense of Martin Fleischman and Stanley Pons’ electrochemists”, in which, I think, I was able to show that it was not a scientific criticism, but a harassment, the initiators of which didn’t disdain from either outright lies or purposeful falsification of results during the reproduction of the experiment. The April “denials” of the American Physical Society and the Massachusetts University of Technology were published a month after the March 23 press conference, while the reaction from Fleischmann and Pons was launched only on the 72nd day. For some reason, at first, nobody paid attention to this circumstance. “Examinations” were frankly “custom-made”, which later became clear, thanks to the investigation of Eugene Mallove. Even the accusations against Fleischmann and Pons, that they held a conference before they published a scientific article and allegedly deceived their co-author Professor Steven Jones, did not correspond to reality.

The main conclusion of my article is

“Cold nuclear fusion is not pseudoscience. Martin Fleischmann and Stanley Pons made a scientific discovery worthy of the Nobel Prize. ”

So I think today, and so we thought in 1989, we are convinced of the correctness of Fleischmann and Pons in their own experiments.


On the economics of cold fusion

We now turn to the question: why is it advantageous to engage in cold nuclear fusion for energy?

In preparing the report, I found such a table in the literature.

The way to get energykWh/kgJ/gTimes greater than previous row energy
Burning oil (coal)11.642 kJ/g1
In the fission of uranium-23522.9 x 10^682.4 GJ/g1,974,138
In the fusion of hydrogen nuclei117.5 x 10^6423 GJ/g5
The energy of a substance according to the formula E=mc^229 x 10^9104.4 TJ/g247

Tab. 1. The amount of energy released in a certain amount of a substance with different methods of production.

With the complete burning of oil or coal, 11.6 kWh / kg is obtained. When uranium-235 is divided in atomic reactors by 1 kg, almost 2 million times more energy is released than by burning oil or coal. In the fusion of hydrogen nuclei, the energy is 5 times greater than in the fission of uranium-235.

And if you manage to release the total energy of a substance according to Einstein’s formula E = m · c2, then you can get 247 times more energy per kilogram of substance in relation to the fusion of hydrogen nuclei.

Next, I analyzed the estimate of the energy released during the fusion of hydrogen nuclei, and it turned out that the only thermonuclear reaction involving hydrogen that could give such an amount of energy per gram of substance, refers to a pair of tritium-protium. As a result, helium-4 (4He) and 19.814 MeV of energy are obtained:

3H + 1H = 4He + ϒ + 19.814 MeV

This reaction totals 474.936 GJ/g. And we, like Fleischmann and Pons, from the very beginning considered as a source of energy the fusion of deuterium nuclei (d + d reaction), which occurs inside the crystal lattice of a metal

d + d = 3He (0, 82 MeV) + n (2.45 MeV) + 3.270 MeV (1 channel)

= T (1.01 MeV) + p (3.02 MeV) + 4.033 MeV (Channel 2)

This fusion reaction is possible through two channels. The first channel is the formation of helium-3 (3He) with a neutron (n) with the release of 3.27 MeV of energy, and the second channel with the formation of tritium (T) and a proton (p) with the release of 4.033 MeV of energy.

For this classical nuclear fusion reaction, when the first and second channels are equally probable, the amount of released energy per gram of molecular deuterium is 87.45 GJ/g (G is Giga = 10^9), which is much less than given in Table 1 (423 GJ/g).

In their work, Fleischmann and Pons drew attention to the fact that they have tritium (T) recorded, as compared with neutrons, 11–14 orders of magnitude more than with the classical d + d reaction. If we take into account this increase in tritium yield in their reaction, confirmed later by the work of the Indian nuclear scientists, who had 7–11 orders of magnitude more tritium output than the neutron yield, then the energy per gram of molecular deuterium is 96.57 GJ/g . Thus, with this fusion reaction, one gram of deuterium can become a continuous source of heat with a capacity of 3.062 kW for a whole year. It is wonderful.

When we learned about the press conference of Fleischmann and Pons, we, a group of employees of the Sverdlovsk branch of the Research and Design Institute of Power Engineering (NIKIET branch named after N. A. Dollezhal – the famous NII-8), worked with titanium hydride. At that time, we were making a high-pressure hydrogen complex with hydrogen pressures up to 400 atmospheres. We had titanium hydride on hand, and expensive palladium, as they say, had to be searched for. Therefore, we took titanium and decided to test it in our own way by saturating titanium with deuterium from the gas phase. We ordered deuterium and tried to work with it at high pressures.

Fig. 4. Top view of the Beloyarsk NPP in Zarechny. The orange arrow indicates the complex of buildings of the SF NIKIET, inscription “NNF” marked where the group of Sergei Tsvetkov began work developing the cold nuclear fusion reactor in April 1989.

The question arises: why we immediately chose titanium intuitively, and then continued to work with it, despite the fact that Fleischmann and Pons used palladium, which is saturated with deuterium during the electrolysis process to produce palladium-deuteride. Discussing the question of how to intensify the process, we came to the conclusion that we need to introduce as much hydrogen or deuterium into the metal crystal lattice as possible in order to get recorded results on heat and on products of the proposed nuclear reaction. And here the following table helped us (Fig. 5).

Fig. 5. Table of binary hydrides in the periodic system from the book “Metal hydrides”. M. Atomizdat, 1973, p. 11.

Metal hydrides were very well researched in the 1960s. In 1973, we had a fundamental American monograph on this topic (see Metal hydrides. Edited by V. Muller et al. Translated from English. – M .: Atomizdat, 1973. – 432 p.). In this book there is a special periodic table, which shows which metal hydrides can form and in what quantities they can absorb hydrogen (Fig. 5). It can be seen from this table that titanium, zirconium and niobium form binary hydrides in which there are up to two hydrogen atoms per metal atom, and, say, palladium and nickel hydrides per metal atom can absorb no more than one hydrogen atom. Thus, it became obvious the advantage of working with titanium in comparison with palladium: titanium absorbs twice the amount of hydrogen, and, consequently, the fusion reactions could be expected at least twice as much.

We now consider Table 2, in which nickel, palladium, titanium, zirconium and niobium are compared in density, content in the earth’s crust, heat capacity, thermal conductivity and cost of these metals.

MetalDensity g/cm3How many times heavier is Ti?Content in earth’s crust,% by weight. Heat capacity, J/ kmolHeat conductivity, (300 K) W/(m*K)Cost as of 09/19/17, USD/kgAtomic mass, g/mol

Tab. 2. Comparison of Pd, Ti, Ni, Zr and Nb according to several characteristics.

It is obvious that titanium clearly stands out against the background of other metals: it is the lightest of all, in the earth’s crust it is the most, its heat capacity and thermal conductivity are rather small, and its cost is low. It is comparable to the cost of nickel, but in terms of its prevalence in the crust, even no attention should be paid to nickel. Thus, it turned out that titanium can and should be used. These were the reasons we had to do titanium.

Most recently, I found my first job in the USSR to saturate titanium with hydrogen. Employees of the Leningrad Polytechnic Institute, Yu. V. Baymakov and O. A. Lebedev, published an article titled “Titanium and Hydrogen” in the collection “Proceedings of the Leningrad Polytechnic Institute” No. 223 for 1963, in which they reported on the thermal effect obtained during the formation of titanium hydride on titanium powder.

Fig. 6. A plot of temperature versus time for heating titanium in hydrogen and a setup diagram for titanium saturation with hydrogen from the article by Yu.V. Baymakov and O. A. Lebedev “Titanium and hydrogen” of 1963.

In the experiment with the formation of hydride, excess heat was recorded in the amount of 16.7 kcal / mol. But the calculated data, which are given in the article:

Fig. 7. Calculation of excess heat generation during the formation of titanium hydride from the article “Titanium and hydrogen” by Yu. V. Baymakov and O. A. Lebedev in 1963

The formation of hydride takes 120 kcal and 103 kcal is spent on the dissociation of hydrogen molecules, that is, the formation of atomic hydrogen. But in the end, all the same, there remains excess heat equal to 14% – this is quite a lot. If we calculate the excess power factor, that is, the ratio of heat expended (120.5 kcal) to excess heat (16.7 kcal), then this will be slightly more than seven. This feature has a titanium, which has been undeservedly ignored in recent studies on cold nuclear fusion.

On the basis of the equipment and materials that we prepared for the high-pressure hydrogen complex, in April 1989, the first experimental setup was created to obtain nuclear fusion reactions in deuterated titanium (Fig. 8).

Fig. 8. The first installation of 1989 for the study of cold nuclear fusion in SF NIKIET. On the left – the high-pressure gas part, on the right – an experimental cell with detectors.

Let me remind you that this story takes place at the Sredmash Research Institute (Ministry of Medium Machine-Building of the USSR), at the Sverdlovsk branch of the Research and Design Institute of Power Engineering (SF NIKIET), which is the site of the experimental reactor of the Moscow NIKIET them. N. A. Dollezhal engaged in the creation of nuclear energy facilities and installations for military and civil purposes.

We expected that we could get very high deuterium pressure, for which a special container was prepared at the facility. It was assumed that we can get a hydrogen pressure of 400 atmospheres. We thought that if we do not get a nuclear fusion reaction at low pressures, then we can achieve a positive effect at high pressure. But this was not necessary. In Fig. 9 that the experimental cell is surrounded by various detectors. We had several systems for measuring nuclear radiation: two detectors were used for gamma radiation, there were track neutron detectors (marked in figure 2).

Fig. 9. Layout of the sensors of the neutron and gamma quanta registration system.

It was a thin mica-muskavit with a diameter of several centimeters with thin layers of uranium-235 and neptunium-237 applied to it. The distance at which these track detectors were located was calculated so that the 2.45 MeV neutrons that Fleischmann and Pons registered were slowed down to such energies when interacting with distilled water as a moderator – (8), so that mica Muskavit to leave their tracks of fission fragments of uranium or neptunium by slow neutrons. Gas-discharge helium-3 counters were also used in neutron detectors (7). Moreover, the detectors for gamma radiation and neutrons were duplicated, for example, up to 15 counters were used in the same neutron detector for neutron registration. Therefore, the registration system was very clear and reliable, with high resolution of neutrons and gamma radiation. The synchronous operation of two sensors independent of each other meant that not random artifacts were recorded, but really neutrons and gamma radiation.

In Fig. 10 shows our very first reactor.

Fig. 10. The first reactor for the production of cold fusion reactions on deuterated titanium, designed in the SF NIKIET in 1989.

A sample of cylindrical titanium hydride with a diameter of 9.5 mm (1) and a length of 70 mm was placed in a stainless tube with an internal diameter of 10 mm. Chromel-alumelic (XA) thermocouples in a sealed stainless steel case with a diameter of 1.5 mm (6, 7) were inserted into the tube on both sides. The entire titanium sample outside the tube was surrounded on all sides by a Peltier calorimeter (2), which was made on the basis of chromel-alumelium thermocouples. The calorimeter was calibrated using an independent heat source, for which, instead of a titanium sample, a model was inserted from a nichrome heater to which current was applied, voltage was measured, its power consumption was calculated. We measured the calorimeter’s response to such heating and thus calibrated it by the excess heat at operating temperatures.

In Fig. 11 shows the results of the first studies obtained on the titanium-deuterium system (Ti-D).

Fig. 11. Studies on the titan-deuterium system, May 19–20, 1989.

This happened on May 19–20, 1989. Here it can be seen that, in addition to excess heat, high temperatures (up to 800ºС and above), gamma radiation and neutrons were recorded. And the letters “n” circled on the graph show the moments of synchronous operation of two neutron sensors located opposite each other. Between the sensors was a titanium-deuterium system.

The experimental results obtained in the spring of 1989 unequivocally proved that the cold nuclear fusion phenomenon exists, and not only in the “palladium-deuterium” system, with which Fleischmann and Pons worked. We were busy saturating titanium from the gas phase. Our idea was that all these reactions take place in those metals and alloys that absorb and release deuterium. That is, we made this reactor in order to obtain the following cycle: saturation with deuterium, then degassing of titanium deuteride — pumping, and neutrons and gamma radiation were also recorded during pumping.

In Fig. 12 shows the results that we have obtained.

Fig. 12. Pressure change, titanium sample temperature and heat flux.

This is where the fun begins. If we compare the heat flux from the titanium sample at the saturation of titanium with deuterium and during the degassing of titanium deuteride – pumping, that is, the release of deuterium from titanium, then the ratio of the heat released during saturation to the heat spent during pumping will be about two (1.96). Thus, when deuterium is absorbed, a lot of heat is released, and when it is pumped out, heat is absorbed, but in smaller quantities. This is the first work that showed that when titanium is saturated with deuterium, excess heat is produced, which is released when titanium hydride is formed and the nuclear fusion reaction accompanies it.

The maximum heat release in the first cycle of experiments reached 39.3W. On one gram of titanium, it generates 2.6 W/g. The value is not very high, but it was received, reliably recorded and well calculated.

According to the results of these works, we made two applications for copyright certificates on the method of performing the reaction of low-temperature nuclear fusion, which was carried out by saturation and degassing. We had a hypothesis that at high saturation of titanium with deuterium, phase transitions occur in titanium deuteride, and at phase transitions the structure of the crystal lattice of titanium changes. And we in our first papers tried to check this hypotheses. It turned out that the majority of neutrons and gamma-rays are recorded at the very moment when the titanium-deuterium system passed through the beta/gamma-deuteride phase boundary of titanium. It is on this way of implementing the nuclear fusion reaction using the phase transition from the beta phase to the gamma phase and back we have applied for copyright certificate.

Further, on the basis of this method, the application “Nuclear fusion reactor” was developed. This application has already proposed to place the titanium-deuterium system under the nuclear reactor under the neutron flux in order to intensify the fusion reactions and get more heat. In the list of authors of the essay of the first article prepared for publication, a team was presented that began to deal with it: Bunkov V.V., Bondarenko N. B., Vlasov V. I., Zlokazov S. B., Kadnikov V. P., Maltsev A. G., Nikiforov A. D., Novikov P. I., Safonov V. A., Shentsev V. M., Tsvetkov S. A

Fig. 13. Abstract of the article “Experimental identification of the reaction of low-temperature fusion in the Ti-D system” 1989.

Contrary to the assurances of thermonuclear fusion specialists that the participants in this study were supposed to be overexposed by neutrons, many of these people are still alive and actively working, and only a few of them died in old age, one of whom was the liquidator of the Chernobyl accident.

Then we did the job of determining the initiation of nuclear fusion reactions in titanium deuteride when exposed to laser radiation. For this, the following scheme was developed. A quartz window reactor was made, a sample of titanium deuteride was placed in this reactor. Then air was pumped out of the reactor and a deuterium atmosphere was created with a pressure of 14 atmospheres. Through a quartz window, a pulsed laser affected the end of the sample inside the reactor, with neutrons and gamma radiation being recorded.

In September 1991, the results of this work were published in the journal of the American Nuclear Society Fusion Technology. At that time, the editor of this journal was George Miley, who suggested that we publish an article.

Fig. 14. The cover of the September issue of the journal Fusion Technology and the first page of the article “Laser-induced cold nuclear fusion in Ti-H2-D2-T2 compositions”.

At the end of this article, calculations were made of a gamma-based creation, which we recorded in the experiment, of a gamma laser.

* * *

A little about yourself, friends and colleagues

I am a nuclear physicist. I have a specialization in “Physics of Nuclear Reactors”. I graduated from the Physics and Technology Faculty of the Ural Polytechnic Institute in Sverdlovsk in 1982. I had a diploma on the subject “Study of thermal decomposition of irradiated and non-irradiated polyimides”. I have two specializations: nuclear reactor physics and isotope separation.

I started working in the Sverdlovsk branch of the Research and Design Institute of Power Engineering in Zarechny, Sverdlovsk Region. The first work on cold nuclear fusion was also carried out there. And then life was so ordered that perestroika began, various incomprehensible events began until the end. As a result, I got into the group of Academician of the Academy of Sciences of the USSR Alexei Nikolaevich Baraboshkin at the Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences. Then, in 1993–1995, work began that was funded by the American firm ENECO. To us, they specifically financed the work on the interaction of strontium cerate with deuterium. As a result of this work, we filed an application for the international patent “Methods and devices for producing neutrons from solid-state proton conductors”.

Aleksey Nikolaevich Baraboshkin, together with then-corresponding member Boris Vladimirovich Deryagin, tried to organize and launch the All-Union scientific research program on cold nuclear fusion in 1990-1991. It was developed in sufficient detail. 32 organizations were supposed to participate in it: 12 institutes of the USSR Academy of Sciences, 9 branch institutes of the IEP of the USSR, 8 universities, 5 academicians of the USSR Academy of Sciences and 5 corresponding members of the USSR Academy of Sciences. At that time, they estimated this program at 15 million rubles and plus 3 million foreign currency rubles and planned to carry it out in four years. The draft program is published on the CTIA and CMM website and in the REGNUM news agency. This is about what they managed to do at the Institute of High-Temperature Electrochemistry of the Ural Branch of the USSR Academy of Sciences.

In 1993, Academician A.N. Baraboshkin held a meeting on this program in order to try to conduct it through the Department of Chemistry of the Russian Academy of Sciences. We gave reports there. I then came with the doctor of chemical sciences Kabir Akhmetovich Kaliev, and we tried to make a demonstration of his work on tungsten bronzes at FIAN. Together with academician A.N. Baraboshkin, they then tried this option. They used tungsten-sodium bronze; sodium was removed by electrolysis at high temperature in a vacuum, as a result of which channels were formed. Then deuterium was let in at room temperature. At the same time neutrons and heat increase were recorded. This work they published in Physics Letters A in 1993.

In 1995, Academician A.N. Baraboshkin died, after which our team broke up, and the “fermentation” began.

In 1996, I had a small business trip to the Joint Institute for Nuclear Research in Dubna, where Kabir Kaliev and I repeated his experiments. Using a high-quality neutron sensor, we recorded neutron pulses. They worked out the technology for producing tungsten-sodium bronzes in order to obtain stable results, because in these experiments, instability was first observed, which, as it turned out, was associated with the structure of these bronzes. It was necessary to grow these bronzes very carefully.

After that, I made an attempt to restore and make a new installation with deuterated titanium at the Institute of Industrial Ecology of the Ural Branch of the Russian Academy of Sciences in Yekaterinburg, but it ended in nothing. Then again the Institute of High-Temperature Electrochemistry, UB RAS. There, work was carried out on the electrolysis of molten salts of KCl, LiCl and LiD. They melted at 300ºС, for which an electrode was used, which was lowered into a container with salts. I worked with a titanium electrode and got excess heat. An article was written on this research cycle that was published for a very long time. In the end, it was published in 2005 in the journal “Rasplavy” of the Ural Branch of the Russian Academy of Sciences.

But then the “struggle for survival” began, where in fact I did not work for a long time, which in 2009 led me to be a junior researcher at the Department of Theoretical Physics and Applied Mathematics at the Ural State Technical University and the Ural Polytechnic Institute in Yekaterinburg.

In 2011, I retired. And then unexpected events began: I was invited to Germany and offered to restore the installation of cold fusion on titanium. I agreed, I came to Nuremberg, and we started working there with private money.

In addition, at this time a number of works was published. Here are the most important from my point of view:

1. Igor L. Beltyukov, Nikolay B. Bondarenko, Arsen A. Janelidze, Mikhail Yu. Gapanov, Konstantin G. Gribanov, Stanislav V. Kondratov, Aleksey G. Maltsev, Peter I. Novikov, Sergey A. Tsvetkov, Vyacheslav I. Zakharov Laser-Induced Cold Nuclear Fusion in Ti-H2-D2-T2 Compositions. // Fusion Technology, 1991, Vol. 20, No. 2, pp. 234−238.

2. I. L. Beltjukov, N. B. Bondarenko, A. A. Dzhanelidze, M. J. Gapanov, K. G. Gribanov, S. V. Kondratov, A. G. Mal’tsev, P. I. Novikov, S. A. Tsvetkov, V. I. Zaharov. Laser system for Ti-H2-D2-T2 // Physics of metals and metallurgical science, No. 6, 1992, pp. 138−143.

3. K. A. Kaliev, A. N. Baraboshkin, A. L. Samgin, V.S. Andreev, S.A. Tsvetkov. Influence of Electrochemical Treatment on Sodium – Tungstic Bronzes // Abstracts of the International Conference, “Minsk, Belarus, May 25–27 1993, pp. 119−120.

4. S. A. Tsvetkov. Initiation of Cold Energy Fusion // Theses of the international conference, “Possibilities of Ecological Clean Energy Production and Energy Conservation”, Minsk, Belarus, May 25–27, 1993, p. 134.

5. S. A. Tsvetkov, N. B. Bondarenko, I. L. Beltjukov, A. N. Varaksin, A. A. Zivoderov. Calculation of the transitions in the system of Pd-D and cold nuclear fusion // Physics of metals and metallurgical science, Vol. 76, Iss. 4, 1993, pp. 94−97.

6. A.L. Samgin, A.N. Baraboshkin, V.S. Andreev, I.V. Murygin, V.P. Gorelov, S.V. Vakarin, S.A. Tsvetkov, A.L. Shalyapin, A.G. Golikov, L.N. Fomina. Neutron generation in solid protonic conductors with perovskite-type structure // ICCF-4, December 6–9, 1993, Lahaina, Hawaii, Vol. 1, No. 2.7.

7. A. L. Samgin, A. N. Baraboshkin, I. V. Murygin, S. A. Tsvetkov, V. S. Andreev, S. V. Vakarin. ICCF-4, December 6–9, 1993, Lahaina, Hawaii, Vol. 1, No. 4.2.

8. A. L. Samgin, A. N. Baraboshkin, I. V. Murygin, S. A. Tsvetkov, V. S. Andreev, S. V. Vakarin. The Influence of Conducting Solid Electrolytes | Proceedings ICCF-4, December 6-9, 1993, Lahaina, Hawaii, EPRI, Palo Alto, California, Vol. 3; Nuclear Measurements Papers, pp. 5−1 ÷ 5−7.

9. Samgin AL, Finodeyev O., Tsvetkov SA, Andreev VS, Khokhlov VA, Filatov ES, Murygin IV, Gorelov VP, Vakarin SV; 5th International Conference on Cold Fusion, April 9–13, 1995, Monte-Carlo, Monaco, pp. 201-208.

10. S. V. Vakarin, A.L. Samgin, V.S. Andreev, and S.A. Tsvetkov. Influence of sodium chloride tungsten per crystals of the International Conference on Cold Fusion, April 9–13, 1995, Monte-Carlo, Monaco, pp. 227-232.

11. V.A. Khokhlov, E.S. Filatov, A.L. Samgin, V.S. Andreev, S.A. Tsvetkov, A.V. Cherepanov, O. Finodeev. Thermal Effects on the Pd-anode at the saturation of the electrolytic or hydrogen in molten salts // Cold nuclear fusion. Materials 2 Russian conferences on cold fusion and transmutations of the nucleus, Sochi, September, 19−23, 1994, Moscow, RFO, 1995, pp. 117–122.

12. Tsvetkov SA, “Cold Nuclear Fusion Initiatives”, Russian Federation Conference on Cold Fusion , 1996, pp. 281−294.

There have been publications on the interaction with laser radiation. There have been attempts to participate in international conferences. I want to draw attention to the fact that in 1995, when I had the opportunity to go to Monte Carlo to the 5th International Conference on Cold Fusion (ICCF-5), we began a correspondence with Martin Fleischmann. In the letter below, he sends me his regards and informs me that they will take over the financing of my trip to ICCF-5. So we met him in absentia.

Fig. 15. Sergey Tsvetkov’s invitation to ICCF-5 with best wishes from Martin Fleischmann dated February 20, 1995.

I can say that from the very beginning we carried out all control experiments with hydrogen very carefully. In the first paper of 1989, we saturated titanium with hydrogen. Excess heat was obtained, but we did not register any nuclear products — neither neutrons, nor gamma radiation. And so we switched to deuterium. On deuterium, the heat additive compared to hydrogen was very large. If hydrogen is a matter of watts, then deuterium is dozens of watts, and today there is a kilowatt of excess heat on titanium.

Stages of development and organization with which I had to work since 1989:

Year Organization
1989-1993 SFNIKIET
1990−1992 Small enterprise SORUS
1996 JINR
1997 IPE UrB RAS
1994–2015 RFBR
1997−2017 Rospatent
2000–2001 HCF
2003−2006 IHTEC UrD RAS
2007 RUSNANO, Russian innovations
2007–2009 GFEN, China
2012-2015 AEE AG GmbH, Germany
2012- … Euro patent 2013 European Commission on Energy
2014 NationalInstruments, USA
2014 AREVA, France
2015 AIRBUS Group
2015−2017 UrFU
2017 JSC Russian Railways
2018 ARPA-E, USA
2018 Deneum, Estonia

There are small enterprises and institutes of the Academy of Sciences of the USSR and the Russian Academy of Sciences. The RFBR (Russian Foundation for Basic Research) is a separate entity. They said that it was necessary to somehow resolve the issue of financing cold fusion research. I can say that I have a unique “achievement” in relations with the RFBR on this issue. From 1994 to 2015, I submitted 30 applications to the Russian Foundation for Basic Research for grants for research on cold nuclear fusion. The only success was received in 2007 under a Russian-Chinese grant, for which we submitted a joint application with Professor Xing Zhong Li from China. He received a grant, but they did not give me one. Professor Li spent three years on this grant, which was associated with the diffusion of deuterium in palladium.

* * *

Comment REGNUM

It turns out an interesting situation: China, Japan, India, South Korea, Italy, the USA, etc. Cold fusion research is needed for solving strategic civil and military tasks, and therefore they finance these works from their scientific and military state budgets, like when in the USSR, and in post-Soviet Russia, especially after the death of Academician A.N. Baraboshkin, for some reason they became absolutely unnecessary and turned into pseudoscience. What does this mean? The question for over 20 years remains unanswered.

* * *

I have not previously said that we performed the molecular dynamics calculation work on the behavior of deuterium in palladium, which also considered phase transitions between the alpha and beta phases in palladium deuteride. If titanium deuteride has three phases, between which there are two interphase transitions, then palladium has only one phase transition between alpha and beta phases. Therefore, the presence of three phases in titanium deuteride suggests that the process in titanium should go better. So it turned out.

Titanium has shown itself to be much better in energy than palladium: in reactors with deuterated titanium, tens and hundreds of watts of excess heat per gram are produced today, while in installations with palladium, milliwatts are still obtained, as in the days of Fleischmann and Pons.

In 2013, at a meeting of the European Commission on Energy, at which prospects for the industrial introduction of cold nuclear fusion installations were discussed, a report was made on the basis of a report by economists from Gazprombank on the use of palladium reactors:

“There is certainly excess heat when using a technological scheme with palladium, but it is too little to create promising power plants. Give us so much heat to steam the turbine, and then we will give you the money. ”

However, despite this conclusion, as Italian physicist Vittorio Violante from the Italian National Atomic Energy Agency (ENEA) told me later, in the same 2013 he received a € 0.5 million grant from the European Commission for his work with palladium, which he worked from 2013 to 2015.

* * *

Vladimir Tsaryov

I would also like to tell about those people who participated from the very beginning in cold fusion research in the USSR and the Russian Federation and with whom I was personally acquainted. The first of them is the head of the department of the Physical Institute of the Russian Academy of Sciences. P. N. Lebedeva, Doctor of Physics and Mathematics Vladimir Aleksandrovich Tsarev.

Fig. 16. U-turn of the author’s copy of the article in V. Tsarev, Uspekhi Fizicheskikh Nauk Physics Sciences, “Abnormal nuclear effects in a solid body (” cold fusion “). Questions still remain,” published in 1992, with a photo and autograph of the author.

He started very well, was interested in cold fusion and managed to publish, in my opinion, two or three very large solid reviews on cold fusion, about what directions there are, how they are developing. I advise everyone to get acquainted with these fundamental reviews, which describe in detail how it all began. We met at a meeting of the chemistry department of the Russian Academy of Sciences, and he gave me his copyright copy of one of these reviews and wrote:

“Someday we laugh at this ?! Or maybe not!”

Fig. 17. The authors of the first open Soviet study on cold nuclear fusion; Academician of the Russian Academy of Sciences B. V. Deryagin and Candidate of Chemical Sciences A. G. Lipson.

I want to pay special attention to the work of the group of Academician Boris Vladimirovich Deryagin. Under his leadership was defended the only candidate dissertation on the study of cold nuclear fusion. Its author, Andrey G. Lipson, is called “Electrophysical Processes on Freshly Produced Surfaces of Solids”, defended in 1986, three years before the press conference of Martin Fleischmann and Stanley Pons.

Fig. 18. The cover of the author’s abstract of the Ph.D. thesis of A. G. Lipson “Electrophysical processes on a freshly formed surface of solids”, protected under the supervision of Academician B. V. Deryagin in 1986.

fuIn the experiments of Boris Deryagin and Andrei Lipson with the help of a copper hammer, they used to pick up “heavy” (deuterated) ice (D2O) and at the same time get high-energy electrons and neutrons. As far as I know, this is the only dissertation on cold fusion that has been defended in the USSR and post-Soviet Russia. I also tried twice to start writing dissertations on cold fusion in the Russian Academy of Sciences, but both times it ended at the stage of agreeing on the topic and approving it at the scientific council of the institute.

Unfortunately, Andrei Lipson died early. He and I, at the 7th International Conference on Cold Synthesis in Vancouver in 1998, prepared a report on the necessary conditions for the implementation of cold nuclear fusion. It was assumed that in the interaction with deuterium phase transitions should take place in the solid, and the surface of the solid should be very large. An optimal time for the implementation of a phase transition in deuterium-solid body systems is necessary, that is, in addition to saturation, it should go at a certain speed. If the saturation goes too slowly, then we do not register the products of the nuclear fusion reaction and we cannot say that nuclear fusion occurs at all. At a certain rate of saturation, nuclear fusion products are recorded. We noticed this moment in the first experiment – the background of neutrons in a solid is necessary. This idea was practiced by Andrei Lipson, he had many such works. He worked on KD (2) PdO (4) – in such a complex system. And in the end, he received excess neutrons when a small source of neutrons was placed next to this system. He supplied deuterium there, heated the sample, and neutrons of very large values ​​were recorded.

The presence of oxygen in the “deuterium-solid” systems is also necessary. This condition is required. In our first papers, we noticed that if you add some air to deuterium, then the neutron yield increases dramatically 300 times.

In 1997, I patented a method for obtaining a nuclear fusion reaction with the addition of air to deuterium and in 2000 received a Russian patent. Here we are talking about a specific method of obtaining nuclear fusion using titanium.

* * *

Andrea Rossi

Separately, I would like to tell you about the famous Italian Andrea Rossi, whom I managed to meet in 2012 in Zurich. In Fig. 19 Andrea Rossi gives me an autograph on his patent application for cold fusion. We then corresponded with him. He knows and remembers me.

Fig. 19. Andrea Rosii signs on a copy of his patent, presented to Sergey Tsvetkov.

It so happened that the famous Italian nuclear physicist Professor Sergio Focardi separated from another famous Italian physicist, Professor Francesco Piantelli, and began to independently engage in cold fusion research in the mid-1990s, and in the early 2000s Andrea Rossi joined Foccardi, and they made an operating device for obtaining excess heat in the interaction of hydrogen with nickel. It was demonstrated by them at the University of Bologna in Italy in January 2011.

At first they had a small reactor, then they created a megawatt heat generator in which 132 reactors of small reactors were combined. Hydrogen was supplied to nickel, and water was pumped outside, which removed heat and reached the boiling point and even higher – up to 102–103 ° C. This water then gave out 1 MW of thermal energy due to hydrogen-nickel reactions. Rossi then used gaseous hydrogen. His reactor worked at low parameters, that is, the temperature of the powder that was loaded into the reactor reached only 300–400 ° C.

Then the results of Focardi and Rossi were repeated by researchers elsewhere in the world. After a repetition of experiments such as in Switzerland by a group, by Giuseppe Levi, by Alexander Parkhomov in Russia, carefully read the reports and repeated their work. Remarkably, the person did not like most: they ran “over the tops”, concluded that this could not be, because this could never be. No, he understood the details, successfully reproduced the result and now he is constantly improving the operating parameters of his reactor.

* * *

Cold Fusion – Dual Purpose Technology

In 2009, the report of the US Department of Defense Intelligence Agency “Technology Forecast: Increasing and Gaining Acceptance” was presented on the state of technology for obtaining cold nuclear fusion reactions in various countries around the world. This was not a secret report.

Naturally, the question arose of what is true in this report and what is disinformation. In particular, this report contained the following phrase regarding one of my work on the processing of radioactive waste:

“If nuclear particles can be obtained and elements can be converted using them, then low-energy nuclear reactions can be used to reduce the risk of nuclear waste or to neutralize weapons of mass destruction? 48”

Link 48 points to my work: Tsvetkov, S.A. “Waste Products Transmutation for Nuclear Fusion”, 10th International Conference on Cold Fusion, Cambridge, MA, 2003, [.pdf] from website.

This paper was published in 2006 in the proceedings of the 10th International Conference (ICCF-10), which Peter Hagelstein organized at the Massachusetts Institute of Technology. I had to make several reports there, and it was one of them, which was called “The possibility of using cold fusion for the transmutation of nuclear waste”. It considered the processing of nuclear waste using fast reactors in the cross section for the interaction of neutrons with cesium and strontium. I considered only two of these radioactive isotopes from the entire spectrum of nuclear waste. On the basis of my experimental data on the number of neutrons registered at cold fusion reactors, I calculated the time for “burning out” radioactive waste and compared it with similar parameters that were obtained in fast neutron reactors. It turned out that for the afterburning of nuclear waste, cold fusion neutrons are more profitable and more convenient to use than fast neutron reactors.

In connection with the report of the intelligence agency of the US Department of Defense, I had a question: why do our military show strange indifference to research on cold nuclear fusion? Perhaps one of the reasons for this situation is precisely the fact that cold fusion neutrons can destroy atomic and hydrogen bombs by transmuting the nuclei of fissile material, making atomic bombs and missile warheads inoperable, in fact disarming the strategic forces of the nuclear powers. This feature makes missile defense unnecessary, deprives the military itself of the huge amount of money they now spend on outdated devices that play the role of scenery in the actions of intimidation of humanity and do not bring any tangible benefit, wasting time and energy, to eventually turn into in the sand.

It is quite obvious that on the Titanium-Deuterium system and its ilk, it is easy to make “hand-grenades” to disable bombs and warheads of missiles. Perhaps this is one of the reasons why our military does not really want to develop cold nuclear fusion, which, however, cannot be said about the American military – just look at the latest US government reports on military research and development in the field of cold fusion.

* * *

Vladimir Balakirev

For many years I have been cooperating with Vladimir Fedorovich Balakirev, Corresponding Member of the Russian Academy of Sciences. Some time after the appearance of the report by the US Defense Secretary, Vladimir Fedorovich received a letter from the Committee on Energy of the State Duma of the Russian Federation, in which he was officially asked to express his opinion on this report, as well as on research on cold fusion in general. The American report stated that there are promising results on cold fusion, everything is fine. And while government funding is not worth it, they say, let the business invest in this area first, and we will see what happens.

Comment REGNUM

Today we know that the situation around cold fusion after the Fleischmann and Pons conference developed from the mid-1990s according to the traditional US scenario: first, risky, high-cost research and breakthrough high-tech developments are implemented with state money, and then a play of their privatization under the guise of living embodiments American dreams such as Bill Gates, Ilon Musk and the like. According to this scheme, military IT-development, pharmaceutical, space, etc. were privatized. Today, the USA does not hide that for the past 25 years the Pentagon, the US Navy, DARPA, the space agency and the largest aviation American corporations have funded work in the field of cold fusion (see for example, a report that is frightening in its frankness (United States Government LENR Energy 2018).

* * *

Vladimir Balakirev wrote a response for the State Duma, in which he argued, and in this I fully support him, that cold nuclear fusion or low-energy nuclear reactions “are fundamental in their essence and are able to lead humanity into a new orbit of existence.”

Fig. 20. Corresponding Member of the Russian Academy of Sciences, State Prize Laureate Vladimir Balakirev.

The letter to the State Duma also listed promising areas for the use of cold fusion, such as:

– obtaining cheap, environmentally friendly thermal and electrical energy;

– single-wire and wireless transmission of electromagnetic energy;

– obtaining all chemical elements and scarce isotopes;

– the use of “strange” radiation;

– obtaining sources of highly targeted x-ray radiation (x-ray lasers).

V.F. Balakirev’s letter to the State Duma on cold fusion is actually only part of a huge correspondence between the Russian government, the Ministry of Defense, the State Duma and the Russian Academy of Sciences with scientists and each other in connection with the publication of the US Department of Defense report on cold fusion. We wrote letters, in response we received answers from the Russian Academy of Sciences, from the Ministry of Defense. The low level of scientific reasoning used by opponents of cold fusion in this correspondence, the obvious commitment of their assessments, combined with the lack of knowledge of the works mentioned in the American report, are worthy of analysis in a separate publication. Their position is unshakable: cold fusion is pseudoscience, the report of the US Defense Department is disinformation, the purpose of which is to direct our weakened intellectual forces along the wrong path.

Before our conference, I met with VF Balakirev. He cannot come from Yekaterinburg, but he said hello to all the participants and signs our welcoming address to colleagues from the USA.

* * *

On the attempt to create a laboratory in the Ural Federal University

Then I started in my alma mater, the Ural Federal University (UFU), organizing seminars on cold fusion. Here is the protocol of one of the seminars at the Department of Technical Physics, in which it is stated that the specialists and the management of the department support this area and talk about the need for public funding.

Fig. 21. Extract from the minutes of the scientific seminar of the Department of Technical Physics from May 25, 2011 on the topic “Single-nuclear nuclear reactions”.

In 2015, the seminars developed into the idea of organizing a laboratory on low-energy nuclear reactions at the Faculty of Physics and Technology of Ural Federal University.

Fig. 22. Title of the presentation of the grant application for the development program of the Ural Federal University.

The head of the laboratory was to be the doctor of physical and mathematical sciences B. V. Shulgin. To organize the laboratory, we applied for projects to receive grants for the development of the university several times. The idea of ​​creating the laboratory was actively supported by the famous theoretical physicist from the Massachusetts University of Technology Peter Hagelstein, who today, March 23, 2019, should open a memorial colloquium for the 30th anniversary of cold fusion in Cambridge in a few hours. Hagelstein gave official consent to become a laboratory supervisor and work in UrFU for at least four months a year.

Then from Yashuhiro Iwamura, a professor at Tohoku University from Japan, who heads the Japanese cold fusion program (NEDO), I also received support for the idea of ​​creating a laboratory in UrFU.

Fig. 23. Famous foreign scientists who supported the idea of ​​creating a cold fusion laboratory in Ural Federal University: left MIT professor Peter Hagelstein and head of the Japanese state program NEDO cold fusion professor at Tohoku University Yashuhiro Iwamura.

European wanderings

In 2012, I managed to get to Nuremberg and organize a laboratory there.

Fig. 25. General view of the laboratory in Nuremberg, Germany, 2012.

I made a new reactor, which used small titanium samples.

Fig. 26. On the left – reactor diagram on the right, in the center – a general view of the reactor, on the right – a working sample.

Collected a new installation. For three years, 62 experiments have been done. The results obtained not only confirmed, but also significantly surpassed the results of previous studies on the titanium – deuterium scheme. An application for registration of a European patent was filed and filed in 2012.

Fig. 27. Application for European patent on the method and device of cold fusion operating on deuterated titanium, from 2012.

It is under review. Twice we were offered to close it and cancel it. But we persist in writing objections. They take time to consider these objections, conduct a new examination and again send us another refusal. But since last year a breakthrough began in the world in issuing various patents on cold fusion, the United States began to officially register patents on cold fusion reactors, I hope that we will “finish off” the European Patent Office and get a patent. Because the Russian patent, which I received in 1997, ended its action in 2017. And the European patent is its continuation.

What results were obtained on this installation? The graph of temperature changes in Fig. 28 shows an abrupt change in the temperature of the sample when the temperature from 590 ° C soars above 1120 ° C when deuterium is injected.

Fig. 28. Temperature change of the sample (6.9 g) with the supply of D2 + 2% air 13.11.2012.

In Fig. 29 shows the change in the pulse counting of the neutron detector. Here you can see the moment of the beginning of the nuclear process and it is clear that at this time the neutron yield is much larger than at the moment of the start of the overlap. The neutron count maximum corresponds to the moment of the second maximum in temperature in Fig. thirty.

Fig. 29. The change in the counting of neutron pulses at the start-up of D2 on sample No. 211.11.2012.

Fig. 30. Sample temperature at titanium deuterium loading 09/14/2015.

I believe that the temperature curve, which is indicated in Fig. 30 in green, is the result of two processes of heat. The first process, shown in blue, is due to the low energy of heat dissipation of the physico-chemical process of formation of titanium deuteride. The formation of titanium deteride gives us Q1 = 84.83 kJ of heat. At the moment of deuterium loading, the second process of releasing additional heat begins, which is Qizb in duration and in magnitude. = 568.25 kJ, and it significantly exceeds the process of hydride formation. It is the second process that is nuclear, that is, its heat is generated due to nuclear processes.

It is possible to determine the amount of deuterium absorbed by changing the pressure of deuterium, which turned out to be equal to 0.4263 g. And for the excess heat of 568 kJ, which is formed as a result of this process, only 5 · 10-6 g of deuterium is needed. This amount of deuterium in relation to the total amount of absorbed deuterium is 1.17 · 10-5 shares. That is, by the amount of released heat there is still a large supply of unused deuterium. This whole process takes only 40–50 minutes. The amount of energy that we spend on absorption in relation to all the heat released is obtained:

(Qizb. + Q1) / Q1 = 7.70

That is, it turns out that only one millionth of the absorbed deuterium is used to obtain the observed excess heat. There is an opportunity to increase this share.

There is one more interesting point to which attention should be paid in these studies. According to calculations, the excess heat that should have been released in these reactions should give the intensity of the neutron source:

Neutron = 3.86 × 10^5 neutron / sec.

But we register:

Ireg = 180 neutron / sec

This is 1869.5 times less than it should be according to calculations. How to explain it?

It is possible that most neutrons are simply absorbed inside the titanium sample, which gives us excess heat. Neutrons remain in the sample and structural materials of the reactor, and only some of them fly out, reach the neutron detector and register with the detector. I have at the moment such a working explanation of all this.

Further in these works secondary signs of cold nuclear fusion were discovered. I have already mentioned that 62 experiments were carried out in Nuremberg. During work we had a break for 4.5 months. At this time, a Geiger counter was left next to the installation, which measured the background inside the room where the installation was located. It turned out that the gamma background around the setup decreased, as can be seen in Fig. 31.

Fig. 31. Change in the pulse count of Gamma Scout from 13.11.2013 to 26.03.2014.

When we made saturation, we managed to increase the gamma background by 6−9%, and here it decreases. And it is clear that it falls off exponentially. And the exhibitor indicates that the process is related to the processes of nuclear decay. There is a scatter of points on the graph, but 6% from the top to the bottom value is nowhere to go – the background has decreased. I calculated the time of effective half-life, and it turned out:

What can disintegrate in the installation? This may be a complex of some elements – this is not one isotope.

Further, when the sample was heated, such an interesting feature was noticed as the change in the power of the external heater.

Fig. 32. Change heater power

The external heater has a certain capacity and heats the sample to 590 ° C. But when deuterium is injected, then a large energy release from the sample begins, and the power of the heater increases. How does it increase? Due to the fact that the temperature of the heater itself and its resistance increase. We used a power source that worked in the mode of maintaining a constant load current, and at the same time the temperature of this heater from an additional heat source increased. Accordingly, the resistance of the heater increases, which leads to a change in the power of the heater, according to my calculations, by 0.64 watts in 43 seconds. This is a fairly sensitive value. Therefore, I had an idea to use this effect to measure the heat from the sample during its saturation with deuterium and degassing. If you calibrate the external heater and install a constant current source, you can measure the amount of heat released from our sample without a Peltier calorimeter or a flow calorimeter.

In the same Nuremberg cycle of experiments, another very interesting mode of continuous release of excess heat was discovered, which I called self-oscillatory. In this mode, the titanium deuteride begins to absorb and release deuterium with a frequency of 0.33 Hz.

In Fig. 33 shows the preparatory steps for starting the system by turning the external heater on and off. The system swayed in this way, before it went into self-oscillatory mode. The sample was completely saturated with deuterium, and then I turned off and turned on the heater. And such a self-oscillating mode can last up to four hours.

Fig. 33. The appearance of the auto-oscillation mode with a frequency of 0.33 Hz on the pressure graph is circled in red.

According to calculations, an excess heat of 360 Watts per 7 g of titanium was obtained. If you count it on a 100-gram sample, you get an excess heat source of about 7 kW. The energy intensity of such a heat source will be 52.2 W / g of titanium, which is higher than the energy release of the WWR-1000 reactor, for which it is 45.5 W / g of uranium. That is, this is a significant heat release that can be converted and used as heat or as electricity.

* * *

In the summer of 2018 in Estonia, I managed to create a new installation (Fig. 34), at which at the maximum an excess heat emission of 500 watts from a titanium sample weighing 35.7 grams was obtained. I started scaling the effect. The result was 12.26 W / g of titanium – this is 4.7 times higher than in the first experiments. It turns out that the amount of heat generated by increasing the mass of the working sample also increases. At this facility, I achieved a process in which there is a constant heat release, while the heat release increases over time. Without adding anything, without touching anything, the system itself enters the self-oscillatory mode when it starts to generate heat.

Fig. 34. Ninth experimental setup cold fusion. Estonia, 2018.

On cold nuclear fusion mechanisms

A few words about the mechanisms of cold nuclear fusion. I found the expression of Albert Einstein, made by him in 1932:

“There is no reason to assume that nuclear energy will ever be obtained. Because for this it is necessary to be able to separate the atoms.”(highlighted by me – S.T.)

Actually, a system of solids (in our case, titanium) and deuterium allows us to separate hydrogen molecules into atoms. This separation mechanism works on the surface, more precisely, the surface works here. The process of titanium saturation with deuterium is carried out in such a way that at first deuterium is adsorbed on the surface, is divided into individual atoms, and individual atoms can penetrate into the titanium lattice. The size of the crystal lattice of titanium is such that the deuterium molecule cannot pass inside. Only if we divide it into individual atoms, then the deuterium in the atomic state quietly passes inside the lattice.

Based on my long research experience, it is possible to formulate the main components of the cold nuclear fusion realization mechanism in titanium:

1. The separation of hydrogen molecules into atoms.

2. Transformation of the energy of individual atoms using heavier atoms.

3. Maxwell distribution of atoms by energy.

4. The effect of the collider.

5. Van der Waals forces.

6. Tunneling.

7. Primary products of high energy cold nuclear fusion.

8. Siverts law.

Explanations for item 7. The first products that are obtained as a result of the d + d reaction, tritium, proton, helium-3 and neutron, have very large energies, MeV! Large energies give a very large cross section for the reaction of the interaction of reaction products with each other. I believe that the resulting neutrons, helium-3, tritium and protons interact with each other with the development of the same tritium and helium-4. A cascade of nuclear reactions is launched, which leads to the production of tritium in much larger quantities than neutrons are obtained, and this is what we register. That is, neutrons, in addition to the energy return to the titanium lattice, are also involved in the formation of tritium. At the same time, helium-3 still adds protons to these reactions; therefore, such an imbalance of the amount of products in these nuclear reactions is observed. As a result of a cascade of nuclear fusion reactions, helium-4 is formed. Thus, helium-4 is not the primary product of the d + d reaction, but secondary, which is created as a result of the implementation of a cascade of nuclear reactions of high-energy products of the initial d + d reactions. That is my understanding of the process today.

* * *

Prospects for cold fusion

It is impossible to tell in detail about all aspects and directions of development that arise in the process of studying this amazing phenomenon of cold nuclear fusion. You can only identify the main directions, each of which requires a serious and lengthy discussion. At the moment I would highlight the following areas:

1. Getting heat and electricity.

2. Processing of nuclear waste from nuclear power plants and other industries.

3. Synthesis of tritium is much cheaper in cost than currently available in nuclear reactors.

4. Synthesis of precious metals and rare isotopes.

5. Getting oxygen from carbon dioxide.

6. Creating a gamma laser.

7. Space, aviation, auto and railway engines using technology.

No one wants to waste time today on understanding the mechanisms of cold fusion, although logic suggests that there was first a fusion of the elements, and now we use them using fission reactions or simply burning fossil fuels. Humanity is vital to the transition to nature-like, cyclical technologies that will meet the needs of people without disturbing the natural balance and gyres. The key technology in this transition today is the cold fusion technology of cold transmutation of nuclei. The transition to new nuclear technologies allows solving simultaneously the main energy, resource and environmental global problems.

Cold nuclear fusion is the gift of the Creator. Sin is not to take advantage of this. We must learn to use it.

By Sergey Tsvetkov

This is a re-post of a google-translated article by Sergey Tsvetkov published April 8, 2019 at REGNUM Any use of materials is allowed only if there is a hyperlink to REGNUM news agency.

Drs. Fleischmann and Pons at the Capitol

Thirty years ago on April 26, 1989, Drs. Martin Fleischmann and Stanley Pons were in the midst of a barrage of inquiries about their discovery. Visitors to their basement lab on the UU campus were treated to a tour, and came away satisfied. Others elsewhere were setting up cells, and failing to reproduce the excess heat effect the pair had claimed was nuclear in origin.

Excitement and confusion carried the news to the U.S Congress where a hearing would be held. A group representing the University of Utah, including Drs. Fleischmann and Pons, the University President Dr. Chase Peterson, and the Vice-President for Research Dr. James J. Brophy would update the House Science, Space, and Technology Committee, and ask for research funding to explore this new effect.

This was documented in the Pulitzer-prize nominated book Fire From Ice Searching for the Truth Behind the Cold Fusion Furor by Eugene F. Mallove which chronicles the early days of Condensed Matter Nuclear Science.

Buy right! Get a copy of Fire from Ice from Eugene Mallove’s Infinite Energy Foundation.

Mallove writes on page 87:

At 9:45 A.A., Room 2318 in the Rayburn House Office Building was packed. Chairman Roe in his prefacing remarks held up the promise of a golden age: ” Today, we may be poised on the threshold of a new era. It is possible that we may be witnessing the cold fusion revolution, so to speak. If so, Man will be unshackled from his dependence on finite energy resources.” The ranking Republican member of the Committee Robert Walker of Pennsylvania, sang the tune of small science, which Pons and Fleischmann had come to personify: “If this discover is fully proven, it will show once again the importance of supporting a vigorous small science enterprise in this period of large engineering and science projects… If the initial results are verified, it is essential that we do everything we can do to develop the promise of cold fusion.” He chilled the hot fusion scientist who were present: “I was pleased that the committee’s Energy Research and Development Subcommittee accepted my amendment during its April 6 markup authorizing that $5 million be redirected from the Magnetic Fusion Program in to the basic Energy Science activity, specifically for room temperature fusion.” He said he would move in the direction of upping that to $25 million. These high states were really making the hot fusion people sweat, but despite their skepticism, they could not be absolutely sure that old fusion was a mistake or an artifact – a misinterpretation of something much more prosaic.

Dr. Stanley Pons (L) and Dr. Martin Fleischmann (R) testifying before the House Space, Science, and Technology Committee April 26, 1989.

Congressman Owens introduced Fleischmann and Pons with soaring words: “The event, the possible achievement of solid state fusion, or the so-called cold fusion, is nothing less than a miracle with all the elements of a miracle – surprise, exaltation, disbelief, and skepticism.” Pons led the cold fusion charge and recounted the tale of their amazing discovery. He had brought a mock-up of their experiment to show the congressmen and held forth with technical slides to buttress his case, explaining the science and technology of the special electrochemistry in some detail. He explained the “competition” of two paths for the deuterium – either release as D2 gas bubbles at the palladium rod surface or deep penetration into the palladium. Pons drew a mental picture to prompt association with hot fusion, “… we end up having a low-temperature plasma inside the metal instead of atoms or molecules of deuterium” Palladium can dissolve within its structure a staggering amount of deuterium (or hydrogen) without forming gas bubbles within the lattice. With the palladium lattice, nature supposedly performs a wonder that our most sophisticated technology is incapable of doing otherwise. Pons said, “If you were to try to obtain that same voltage by the compression the hydrogen gas to get that same chemical potential of 0.8 Volts you would have to exert a hydrostatic pressure of a billion, billion, billion atmospheres…” Pons estimated the effective confinement time for the deuterium atoms to be 600 years! Ergo, he and Fleischmann had tamed fusion.

Mallove continued describing Stanley Pons’ experimental conclusions:

….The bottom line: “… the excess heat liberated is of such a magnitude that it cannot be explained by any chemical reaction.” But even more wondrous: “The heat generation continues indefinitely until the cell is turned off….” This time he fully owned up to the mystery of cold fusion: The amount of energy coming out was about a billion times more than could be explained with conventional d-d fusion giving those same measured levels of neutrons and tritium. “So apparently there is another nuclear reaction or another branch of the deuterium-deuterium fusion reaction that heretofore has not been considered, and it is that that we propose is, indeed, the mechanism of the excess heat generation.”

Responding to question about others who reported that they could not reproduce the effect, Eugene Mallove recounts Dr. Fleischmann’s response.

To questions about reproducibility, Fleischmann claimed that many people were setting up cells with dimensions and parameters that—not surprising to him—did not yield excess heat. Just to be sure no one could question their veracity, Pons announced that researchers from Los Alamos would soon be coming to the University of Utah to measure a working cell and would take it back with them for testing (after it was charged up with deuterium). He also said that other groups in the past week had come to the university and had been satisfied with what they saw.

They were supremely confident of their results. Pons told the committee: “For five and a half years I think we were our most severe critics, and we are still as sure as sure can be. We produce our data and we believe what we are seeing.” Fleischmann was only a shade more circumspect: “I do not know how to interpret our results in any other way than that we have observed a fusion phenomenon. So I’m still totally convinced about our work. But naturally, we shall have to look at everybody else’s work as well, including all unsuccessful experiments, and only time will show whether we are correct or not.” Fleischmann based this claim, he said, on adding up the total energy coming out of a typical cell over a period of 100 hours or more. The bottom line: The excess energy per cubic centimeter of material in the palladium electrode (5 megajoules per cubic centimeter; alternatively, 1.4 kilowatt-hours per cc) was over a 100 times “any conceivable chemical reaction in the system.” Fleischmann did not doubt that if the experiment were run 10 times longer, the total excess would be 1,000 times higher than a chemical process.”

Also testifying in support of the claims was Dr. Robert Huggins, a Professor in the Materials Science and Engineering at Stanford University. Mallove writes that at the hearing, Dr. Huggins claimed 14% excess heat with a deuterium cell, while a light-hydrogen cell used as a control produces zero excess heat.

He put the magic conclusion directly up front, “The results that we
have obtained lend credence to the Fleischmann and Pons contention that a significant amount of thermal energy is evolved when deuterium is inserted into palladium, and that this phenomenon is quite different from the behavior of the otherwise analogous hydrogen-palladium system.” Not being experienced in nuclear measurements, however, he had no neutron or other radiation data to give further support to this remarkable result.

Huggins’ group was claiming about 14 percent excess heat in one of the experiments. The excess power generated in the deuterium-containing cell increased continuously, while the power curve of the light water cell remained essentially flat. Huggins concluded that there must be “an appreciable internal heat generation effect in the case of the deuterium-palladium system, regardless of the presence of any chemical or thermal effects in both systems.” The group had observed the phenomenon, he said, in more than one sample, on several occasions, and with different types of calorimeters. Moreover, Huggins asserted, “The magnitudes of the observed effects are comparable to those reported earlier by Fleischmann and Pons and lend strong support to the validity of their results.” Huggins told the panel that the now very puzzling reproducibility problem in his view had to do with the preparation of electrode materials, a theme he would consistently echo in weeks to come. He cautiously avoided a firm conclusion that the phenomenon was a nuclear effect, though he did cite the Walling-Simons theory (the helium-4 production branch of d-d fusion) as a possible explanation.

George H. Miley

Another supporter came in the form of hot fusion scientist and editor of the journal Fusion Technology, Dr. George H. Miley, whose written statement to the Committee included, “I am personally convinced that solid-state catalyzed cold fusion occurs and this is an unexpected

and very important new regime of physics.” In fact, Professor Miley was a “proponent of fusion in any form”

Mallove writes in Fire from Ice:

Miley’s overall message advocated diversity in fusion research—the antithesis of the present direction of the financially strapped hot fusion program. “It’s very important to the research activities of this nation that we have seed money to allow smaller groups to do the exploratory research,” he said. “I’m a lifelong proponent of fusion. It has so many possibilities, that one of the difficulties of the moment is there is no roo for funding for innovative research. Something has to be done.” He was absolutely right.

Of course detractors were at the hearing as well. Dr. Ronald Ballinger, Professor of Nuclear Science and Engineering at Massachusetts Institute of Technology “blasted Drs. Fleischmann and Pons’ “communication”.

Eugene Mallove tells the story of how Dr. Ballinger told the Committee

…that the round-the-clock MIT experimenters had so far been unable to verify any cold fusion claims. “To my knowledge,” he said, “with the possible exception of the people at Stanford [University], and the results from Europe and the USSR, of which I have no personal knowledge, we have not had a single confirmation, scientific confirmation of the reported neutron emissions from the experiment, nor the excess heat. I want to be careful when I say scientifically verified.” He maintained that the MIT radiation detection measurements were at least 10 times more sensitive than the University of Utah measurements yet had found no neutrons. He also claimed that MIT’s calorimetry was also “probably about ten times more sensitive.”* Blasting Fleischmann and Pons’s style of scientific communication, he said, “… the scientific community has been left to attempt to reproduce and verify a major scientific breakthrough while getting its experimental details from The Wall Street Journal and other news publications.” He urged the committee to support verification experiments but not to commit major funds before that process had worked its way through.

As it turned out, the Massachusetts Institute of Technology’s attempts to reproduce the effect were woefully inadequate.

The MIT Plasma Fusion Center held a Wake for Cold Fusion before their experiments were even finished. Shockingly, they also edited their data, moving temperature readings downward to eliminate any possible signature of excess heat.

The report on the MIT physicists’ malfeasance was documented in MIT and Cold Fusion: A Special Report and prompted Dr. Eugene Malloves resignation from the MIT Science News Office.

A later analysis of both MIT and Caltech’s epic fails was performed by Drs. Melvin Miles and Peter Hagelstein who determined that in both cases, crippling designs and/or procedure damned their results. For details read New analysis of MIT Calorimetric Errors [[.pdf]

See also How Nature refused to re-examine the 1989 CalTech experiment by Jed Rothwell.

On the 30th Anniversary of the Discovery of the Cold Fusion Phenomenon by Hideo Kozima

On the 30th Anniversary of the Discovery of the Cold Fusion Phenomenon by Hideo Kozima [.pdf] was first published in the Cold Fusion Research Laboratory CFRL News No. 107 (2019. 3. 1)

March 23 is the birthday of the cold fusion phenomenon (CFP). On this day 30 years ago, the existence of the nuclear reactions in a solid at near room temperature was declared by Martin Fleischmann and Stanley Pons at the press conference held in the University of Utah, USA. This event, right or wrong, is the start of the open research on the CFP lasting 30 years since, and has given a specific destiny to the research field we have been involved in. The investigation on the physics of the CFP has lasted without interruption and is developing day by day now.

Martin Fleischmann (March 29, 1927 – August 3, 2012) on April 7, 1995 at his office in IMRA S.A. Science Center, Sophia Antipolis, Valbonne, France. (Photo by Hideo Kozima)

I would like to recollect the history of the cold fusion research from my point of view focusing at my research activity kept about 30 years from the beginning of this science.

First of all, it is necessary to recollect the great pioneering works accomplished by Martin Fleischmann. We give a brief survey of Fleischmann’s work in Section II focusing on his mental phase of the cold fusion research. It is interesting to notice the motivation of the scientist who discovered the new phenomenon – nuclear reactions in transition metal deuterides and hydrides at around room temperature – with an inappropriate premise on the nuclear reaction between two deuterons. In Appendix A, we cite several sentences on this point from writings by Martin Fleischmann.

Here, we give a short comment on the words “Cold Fusion Phenomenon” we used to call the events observed in CF materials, i.e. materials where the CFP has been observed.

We notice the words “Cold Fusion” and “Cold Fusion Phenomena” are used in the titles of several Fleischmann’s papers (c.f. Appendix A). In the words “Cold Fusion” he had given a special meaning as we see in Section II where we survey his mental process resulted in the discovery of the CFP

“Cold Fusion Phenomena” used by Fleischmann means whole events resulting from nuclear reactions occurring in materials composed of host elements (Pd, Ti) and deuterium. In the progress of research in this field, we know now that nuclear reactions occur not only in deuterium systems but also in protium systems. Furthermore, we know the observables related to the nuclear reactions in this field ranges not only to excess energy but also to transmuted nuclei including tritium, 4He, and neutron. We can guess that the events producing these products in such various materials had been called as “phenomena” by Fleischmann. He would has used “Cold Fusion Phenomena” to express whole research field he explored and developed since 1989 combining the “cold fusion” in his mind from the beginning and “phenomena” containing various events observed. Borrowing his terminology partially, we would like to use the “Cold Fusion Phenomenon” to call the whole events thus occurring in the CF materials where occur nuclear reactions at around room temperature without acceleration mechanisms for participating particles

I. My Research on the Science of the Cold Fusion Phenomenon

Hideo Kozima (left) and John Dash (right) in February 2001 (courtesy of Hideo Kozima for Infinite Energy Magazine.)

I have published two books and many papers on the CFP. The books are:

H. Kozima, Discovery of the Cold Fusion Phenomenon – Development of Solid State-Nuclear Physics and the Energy Crisis in the 21st Century –, Ohtake Shuppan Inc., 1998, ISBN 4-87186-044-2. [Kozima 1998]

H. Kozima, The Science of the Cold Fusion Phenomenon, – In Search of the Physics and Chemistry behind Complex Experimental Data Sets –, 1st Edition, Elsevier, Amsterdam, 2006, ISBN-13: 978-0-08045-110-7. [Kozima 2006]

These books give record to the progress of my research; Book 1 had shown effectiveness of the phenomenological approach with the TNCF model (trapped neutron catalyzed model). This is also understood as evidence of the participation of neutrons on the nuclear reactions in materials composed of host elements and hydrogen isotopes (CF materials) where occurs the CFP.

Book 2 had shown that the premises assumed in the TNCF model have been explained using quantum mechanics where a new feature of nuclear interactions between nuclei of host elements at lattice sites (lattice nuclei) and hydrogen isotopes at interstitial sites (interstitial protons/deuterons) works effectively to realize a new interaction between lattice nuclei not noticed before.

In addition to the possible new interaction between lattice nuclei, the effect of complexity on the CFP has been investigated in relation to various experimental data.

It should be mentioned here about an elaborate work by Edmund Storms who compiled and published an extensive list of papers until 2007 [Storms 2007]. This work is very useful to contemplate the total image of the CFP

I-1 The Subtitle of “The Discovery of the Cold Fusion Phenomenon”

The subtitle of the Book 1 is suggestive to the history of the cold fusion research: Development of Solid State-Nuclear Physics and the Energy Crisis in the 21st Century.

The first half of this subtitle is reflected in the papers I have presented at JCF 19 held on October 2018:

H. Kozima, “Development of the Solid State-Nuclear Physics,” Proc. JCF19, 19-15 (2019) (to be published), ISSN 2187-2260. [Kozima 2019c]

In this paper, the essential contents of the solid state-nuclear physics have been systematically surveyed. The complexity in the process of formation of the CF materials and the novel features of the interactions between host elements and occluded hydrogen isotopes have been extensively investigated.

Key concepts developed in our theory are;
(1) Complexity in formation of the metal-hydrogen superlattice
(2) Super-nuclear interaction between neutrons in different lattice nuclei
(3) Neutron energy bands and neutron drops in them
(4) Nuclear interactions between neutrons in the neutron bands and nuclei at disordered sites.

The second half of that subtitle “the Energy Crisis in the 21st Century” has shed various light on the cold fusion research. This problem is discussed below in Sections II and III.

I-2. The Subtitle of the book “The Science of the Cold Fusion Phenomenon”

We now take up the subtitle of the Second Book – In Search of the Physics and Chemistry behind Complex Experimental Data Sets –.

We have noticed many characteristics of the CFP observed in metal-hydrogen systems and carbon-hydrogen systems as pointed out in our papers [Kozima 2006, 2016a]. It should be noted here that the chemistry of the CFP seems to be a key factor to form the CF materials in the electrolytic systems [Kozima 2000b (Sec. 4)]. It was noticed a characteristic of the CF materials in the electrolytic systems is the preference of a cathode metal and an electrolyte: “It should be emphasized here that there are preference for combination of a cathode metal (Pd, Ni. Ti. Pt, Au, etc.), an electrolyte (Li, N, K, or Rb) and a solvent (D2O or H2O) to induce CFP.” [Kozima 2000b (p. 45)].

The physics of the CFP seems to be the fundamental factor for the occurrence of the nuclear reactions in the CF materials. Main efforts to explain the nuclear reactions in CF materials at near room temperature without any acceleration mechanisms have been endeavored as follows [Kozima 2004, 2006, 2013, 2016b, 2019c]. To give a unified explanation of these complex experimental data containing such characteristics, we have struggled with successive trials (shown below) arrived at our final image summarized in the paper published in 2019 [Kozima 2019c].

We follow the history of our research chronologically:

Observation of neutron emission from Pd/LiOH+H2D/Pt electrolytic system [Kozima 1990].

Proposal of the TNCF model (trapped neutron catalyzed model) assuming quasi-stable neutrons in CF materials [Kozima 1994].

Publication of Book I compiling experimental data analyzed by the TNCF model [Kozima 1998].

Proposal of the ND model (neutron drop model) assuming formation of the cf-matter containing neutron drops AZΔ composed of Z protons and (A – Z) neutrons [Kozima 2000a].

Publication of Book II compiling experimental data analyzed by the TNCF and ND models [Kozima 2006]

Explanation of the neutron energy band (one of central premises of the ND model) by a quantum mechanical verification of the super-nuclear interaction between neutrons in different lattice nuclei [Kozima 2009].

Compilation of three laws in the CFP induced from experimental data sets [Kozima 2012].

Explanation of the formation of the metal-hydrogen superlattice and the nature of the three laws in the CFP by complexity inherited in the CF materials [Kozima 2013].

Justification of the phenomenological approach using the TNCF and the ND models to the CFP by inductive logic and the meta-analysis [Kozima 2019c].

II. Martin Fleischmann – A Great Scientist who co-discovered the Cold Fusion Phenomenon

In this section, we follow Fleischmann’s idea which lead to the discovery of the cold fusion phenomenon (CFP) through his papers. We know that anyone can’t be omnipotent. Even Martin Fleischmann is, regrettably, not its exception. He had been uncomfortable in the d – d fusion reactions at several points* but remained there without stepping over its conceptual barrier to a mechanism applicable not only to deuterium systems but also to protium systems.

*There are several sentences showing his insight into new mechanisms for the CFP. Followings are some of them cited from his papers referred in this paper.

“The most surprising feature of our results however, is that reactions (v) and (vi) are only a small part of the overall reaction scheme and that the bulk of the energy release is due to an hitherto unknown nuclear process or processes ) presumably again due to deuterons).” [Fleischmann 1989 (p. 308)]

“In the development of any new area of research (and especially in one likely to arouse controversy!) it is desirable to achieve first of all a qualitative demonstration of the phenomena invoked in the explanation of the observations. It is the qualitative demonstrations which are unambiguous: the quantitative analyses of the experimental results can be the subject of debate but, if these quantitative analyses stand in opposition to the qualitative demonstration, then these methods of analysis must be judged to be incorrect.” [Fleischmann 1991 (p. 2)]“An important key to the understanding of the system is given by the strange properties of D and H and T in such lattices. We must ask: how can it be that D can exist at a ∼ 100 molar concentration and high supersaturations without forming D2 in the lattice?”

“How can it be that D diffuses so rapidly thorough the lattice (diffusion coefficient > 10–7 cm2s–1 greater than that of either h or T!) whereas He is practically immobile?”

The answer to the last questions, of course, that deuterium is present as the deuteron whereas 4He does not form α-particles.” [Fleischmann 1991 (p. 9)]

In Appendix A, we have collected several sentences showing Fleischmann’s ideas on the CFP; there are his interesting ideas from the original simple one resulted in the paper published in 1989 to later ones speculating possible mechanisms for various experimental data obtained in the progress of the science in this field. Short explanations are given for each sentences from my point of view at present by an afterthought.

III. Problems related to the “the Energy Crisis in the 21st Century”

In this section, we focus on the financial phase of the scientific research in modern society which has given enormous effects on the cold fusion research.

The financial support to scientific researches has been a fundamentally important problem to promote the research programs in the modern society. We have given a short investigation on this problem [Kozima 2017].
In the discovery and development of the CFP, there are shadows of this problem from the first up to present. The financial faces of the CF research until 1990 had been written in the DOE Report I published in 1989 [DOE 1989] and also written by Taubes [Taubes 1993] and by Huizenga [Huizenga 1992]. The same problem after 1989 until 2004 appeared in the DOE Report II published in 2004 [DOE 2004].

III-1. DOE Report I [DOE 1989]

The shortcomings of the DOE Report I were discussed in my book published in 1998 [Kozima 1998 (Sec. 1.2 DOE Report), 2016a (Sec. 2 DOE Reports 1989 and 2004)] as follows:

“The Committees in the Department of Energy had been composed of experts in relevant fields to the CFP and their technical opinions should be esteemed. It should, however, be pointed out limitations imposed on them by their duty different from the researchers in this field. Their duty binds them to confine their sight and also their expertise limits their investigation of the data of the CFP inside their field preventing extension of their sight.” [Kozima 2016a (p. 163)

Let us point out mistakes in the DOE report

Conclusion (1) is based on Conclusions (2) ~ (5), and it has no basis if Conclusions (2) ~ (5) are incorrect. The issue of excess heat and fusion products discussed in Conclusion (2) has significance only when D + D reaction is assumed as the main process. This assumption was adopted by the majority of the scientists at that time, including those who discovered cold fusion.

If there is some other mechanism governing the process, this argument is no longer valid. If you are searching for truth, whether one assumption made by a scientist is correct or not has no importance. You should search for the truth based on the fact that the phenomenon did occur. From this point of view, we will show, in Chapters 11 and 12, that it is possible to explain the results of cold fusion experiments without any inconsistency.

Conclusion (3) was based on the fact that the cold fusion phenomenon presented poor reproducibility. However, the reproducibility of a phenomenon is determined by the condition of the entire system, in which the process takes place. Simple analogy from other physical phenomena should not have been used to draw a conclusion. We will also show the reasons for the poor reproducibility and the way to improve it in Chapters 11 and 12.

Conclusion (4) only shows that the interpretations of the discoverers of cold fusion were not appropriate, and it has nothing to do with the truth. It is hard to believe that board members have made such an elementary mistake. It was found later that inside solid, such as Pd or Ti, with a combination of various factors, complex phenomena can occur. There is always such possibility in science. Today, it is quite obvious to everybody. The board members might have forgotten for some reason that natural science is built upon the fact.

Conclusion (5) is similar to Conclusion (4). If any new findings had been denied only because they were contradiction with the existing knowledge, there would have been no progress in science and there will not be any progress in the future.

The discussions expressed in the DOE Report remind us Procrustes’ bed. As Procrustes used his bed as an absolute standard to measure heights of his captives, the critiques against cold fusion used d – d reaction as an inevitable standard to judge anomalous events.” [Kozima 1998 (pp. 3 – 7)]
It is difficult to evaluate scientific works without a right point of view, even if he/she has enough knowledge about the theme of the works.

III-2. DOE Report II [DOE 2004

Almost 15 years since the DOE Report I, several scientists in the U.S.A. asked their Department of Energy to reconsider the evaluation issued in 1989.

The DOE Report 2004 [DOE 2004] has a different character from that of 1989. The new Report was issued according to the request presented by several CF researchers as a document [Hagelstein 2004].

“’The Department of Energy’s (DOE) Office of Science (SC) was approached in late 2003 by a group of scientists who requested that the Department revisit the question of scientific evidence for low energy nuclear reactions. In 1989 Pons and Fleischman first reported the production of “excess” heat in a Pd electrochemical cell, and postulated that this was due to D-D fusion (D=deuterium), sometimes referred to as ‘cold fusion.’ The work was reviewed in 1989 by the Energy Research Advisory Board (ERAB) of the DOE. ERAB did not recommend the establishment of special programs within DOE devoted to the science of low energy fusion, but supported funding of peer-reviewed experiments for further investigations. Since 1989, research programs in cold fusion have been supported by various universities, private industry, and government agencies in several countries.”[DOE 2004]

According to the limited evidences given to the DOE as clearly written in the above Abstract, the material is confined to the “The experimental evidence for anomalies in metal deuterides” and does not include the data obtained in the protium systems. Therefore, the material given to the DOE is necessarily an incomplete one to show the cold fusion phenomenon as a whole. However, the Report [DOE 2004] had merit to evaluate positive phases of the CF researches after the DOE Report 1989 [DOE 1989].

“Conclusion of DOE is cited as follows: “While significant progress has been made in the sophistication of calorimeters since the review of this subject in 1989, the conclusions reached by the reviewers today are similar to those found in the 1989 review.”

“The current reviewers identified a number of basic science research areas that could be helpful in resolving some of the controversies in the field, two of which were: 1) material science aspects of deuterated metals using modern characterization techniques, and 2) the study of particles reportedly emitted from deuterated foils using state-of-the-art apparatus and methods. The reviewers believed that this field would benefit from the peer-review processes associated with proposal submission to agencies and paper submission to archival journals.” [DOE 2004]

It should be cited one of the positive comments in the Report as follows:

“It is now clear that loading level and current density thresholds are required in order to observe excess heat in these experiments. The values are consistent regardless of the approach used and the laboratory where the experiment was conducted. Early failures to reproduce the heat effect were, in part, due to not meeting these requirements. It has also been found that thermal and current density transients, which are thought to effect the chemical environment such as deuterium flux, can trigger heat ‘events’. “

“SRI has published an expression for the correlation between excess power and current density, loading, and deuterium flux. These discoveries have led to a better understanding of the phenomena and more reproducibility.” (Reviewer #9) [Kozima 2016a (pp. 164 – 165)]

Even if the nuclear transmutation in the CFP was excluded from the investigation by experts in the review team of DOE, the partial positive evaluation given in their Report was encouraging to the cold fusion society.

III-3. Two Books by Huizenga [Huizenga 1992] and Taubes [Taubes 1993]

The unpleasant episodes about the financial support around researchers described by Taubes in detail in his book [Taubes 1993] and the movement in the State of Utah to establish the National Cold Fusion Institute described by Huizenga [Huizenga 1992 (Chap. X)] had made the atmosphere around the cold fusion research dark or even black. These episodes had given very strong negative influence about the CFP on scientists all over the world.

Some examples of the negative influence are seen in book reviews for these books. The scientists wrote these reviews by only reading the books by Huizenga [Huizenga 1992] and Taubes [Taubes 1993] without reading original papers and contemplating experimental data written there. Even if a scientist is trained in one of established branches of modern science, it is not easy to understand the pioneering work in a truly novel field of researches if he/she don’t use his/her scientific spirit for the field which is alien to him/her.

It should be remembered that there is a scientist in the Cold Fusion Panel in the U.S. Department of Energy who insisted to add several words on reservation to deny the existence of the cold fusion events making the preamble as follows:

“A. Preamble Ordinarily, new scientific discoveries are claimed to be consistent and reproducible; as a result, if the experiments are not complicated, the discovery can usually be confirmed or disproved in a few months. The claims of cold fusion, however, are unusual in that even the strongest proponents of cold fusion assert that the experiments, for unknown reasons, are not consistent and reproducible at the present time.”

“However, even a single short but valid cold fusion period would be revolutionary. As as a result, it is difficult convincingly to resolve all cold fusion claims since, for example, any good experiment that fails to find cold fusion can be discounted as merely not working for unknown reasons.”

“Likewise the failure of a theory to account for cold fusion can be discounted on the grounds that the correct explanation and theory has not been provided. Consequently, with the many contradictory existing claims it is not possible at this time to state categorically that all the claims for cold fusion have been convincingly either proved or disproved. Nonetheless, on balance, the Panel has reached the following conclusions and recommendations:” [DOE 1989 (V. Conclusions and Recommendations, A. Preamble, p. 36), Kozima 1989 (Sec. 1.2 DOE Report), 2016a (Sec. 2)]

IV Conclusion

The history of the CF research in these 30 years since the observation of a part of the CFP induced by nuclear reactions in a CF material is a typical story of discovery of a new science. There had been no framework to put the events in it and we had to treat them by trial-and-error. In the processes of trial-and-error, there were many unintentional errors which might be, regrettably, supposed intentional. The social condition for scientific activity in modern times has been severe asking shortsighted success for investment which is not fit with science.

I have endeavored to give a unified scientific explanation for the complicated variety of experimental data obtained in various CF materials. Fortunately, the phenomenological approach using a model with the trapped neutrons in CF materials could explain experimental data qualitatively and sometimes quasi-quantitatively. As summarized in Section I, our trial on this line developed to enclose whole phases of the CFP. I hope that my system of explanation for the CFP thus established may be, at least, a tiny step to establish the solid state-nuclear physics even if I remember in my mind a sentence I wrote above anyone can’t be omnipotent. However, I would be behind the words “to err is human; to forgive, divine.”


Appendix A. Martin Fleischmann on the Cold Fusion Phenomenon

[Fleischmann 1989] M, Fleischmann, S. Pons and M. Hawkins, “Electrochemically induced Nuclear Fusion of Deuterium,” J. Electroanal. Chem., 261, 301 – 308 (1989), ISSN: 1572-6657

[Fleischmann 1990] M. Fleischmann, “An Overview of Cold Fusion Phenomena,” ICCF1 lecture (March 31. 1990, Saturday), Proc. ICCF1, pp. 344 – 350 (1990)

[Fleischmann 1991] M. Fleischmann, “Present Status of Research in Cold Fusion,” Proc. ICCF2, Addition to the Conference Proceedings, pp. 1 – 10 (1991), ISBN 88-7794-045-X

[Fleischmann 1998a] M. Fleischmann, “Abstract” to “Cold Fusion: Past, Present and Future,” Proc. ICCF7.

[Fleischmann 1998b] M. Fleischmann, “Cold Fusion: Past, Present and Future,” Proc. ICCF7, pp. 119 – 127 (1998). ENECO Inc., Salt Lake City, Utah, USA

[Fleischmann 1989] Martin Fleischmann had considered the realization of the dream F. Paneth dreamed 70 years ago that deuterons will fuse in a palladium metal where they are occluded with a very high concentration.

“A feature which is of special interest and which prompted the present investigation, is the very high H/D separation factor for absorbed hydrogen and deuterium. This can be explained only fi the H+ and D+ in the lattice behave as classical oscillators (possibly as delocalised species) i.e. they must be in very shallow potential wells. In view of the very high compression and mobility of the dissolved species there must therefore be a significant number of close collisions and one can pose the question: would nuclear fusion of D+ such as
2D + 2D → 3T (1.01 MeV) + 1H (3.02 MeV) (v)
2D + 2D → 3Te (0.82 MeV) + n (2.45 MeV) (vi)
be feasible under these conditions?” ([Fleischmann 1989 (p. 302)]

However, it is interesting to notice following sentences in the same paper:
“The most surprising feature of our results however, is that reactions (v) and (vi) are only a small part of the overall reaction scheme and that the bulk of the energy release is due to an hitherto unknown nuclear process or processes ) presumably again due to deuterons).” [ibid. (p. 308)]

His motivation to this experiment published as a preliminary note in the Journal of Electroanalytical Chemistry was printed in his later article [Fleischmann 1993a]

The controversial contents of this paper in addition to other data obtained following few years had been consistently analyzed by the TNCF model [Kozima 1997].

“- – – We, for our part, would not have started this investigation if we had accepted the view that nuclear reactions in host lattices could not be affected by coherent processes. The background to this research has been presented from the point of view of the behavior of D+ in palladium cathodes since this has been our exclusive concern. A somewhat different account would be relevant to the behavior of deuterium in titanium, the other system which has been the subject of intensive research following the description of the generation of low levels of neutrons during cathodic polarization.” [Fleischmann 1990 (p. 347)]

“It is now also essential to broaden the base of the research to include both the quantitative evaluation of the effects of the many variables leading to the control and optimization of particular outputs (compare(46) ) and the extension of the range of systems showing the various effects. For the Pd-D system the central conundrum, the disparity of the excess enthalpy generation and of the expected nuclear products according to reactions (i) and (ii) however remains unsolved. It is clear that there must be other nuclear reaction paths of high cross-section and that these will only be discovered by a careful search for products on the surface and in the bulk of the electrodes (as well as in the solution and gas spaces).” [ibid. (p. 348)] [Fleischmann 1991]

He seems to have had realized the nature of the CFP and necessity of qualitative approach which had been elucidated in our recent paper [Kozima 2019b].

“In the development of any new area of research (and especially in one likely to arouse controversy!) it is desirable to achieve first of all a qualitative demonstration of the phenomena invoked in the explanation of the observations. It is the qualitative demonstrations which are unambiguous: the quantitative analyses of the experimental results can be the subject of debate but, if these quantitative analyses stand in opposition to the qualitative demonstration, then these methods of analysis must be judged to be incorrect.” [Fleischmann 1991 (p. 2)]

He was persisting in the d – d fusion reactions: “The most rudimentary measurements of the generation of tritium and of the neutron flux (or rather the lack of it!) show that the nuclear reaction paths
2D + 2D → 3T (1.01 MeV) + 1H (3.02 MeV) (i)
2D + 2D → 3Te (0.82 MeV) + n (2.45 MeV) (ii)
which are dominant in high energy fusion (and which have roughly equal cross-sections under those conditions) contribute to only a very small extent to the observed phenomena.

We reach the conclusions:
i. The lattice has an important influence on the nuclear processes;
ii. The observed processes are substantially aneutronic;
iii. The generation of excess enthalpy is the main signature of these new nuclear processes.” [Fleischmann 1991 (p. 4)]

He was aware of the correlation between the super-diffusivity of D in Pd and the CFP in it.

“An important key to the understanding of the system is given by the strange properties of D and H and T in such lattices. We must ask: how can it be that D can exist at a ∼ 100 molar concentration and high supersaturations without forming D2 in the lattice?”

“How can it be that D diffuses so rapidly thorough the lattice (diffusion coefficient > 10–7 cm2s–1 greater than that of either h or T!) whereas He is practically immobile?”

“The answer to the last questions, of course, that deuterium is present as the deuteron whereas 4He does not form α-particles.” [Fleischmann 1991 (p. 9)]

This point has been explained in our recent paper [Kozima 2019c]

[Fleischmann 1998a, 1998b] He explained his basic concept of his experiment on the CFP done before 1989.

“In 1983, Stanley Pons and I posed ourselves the following two question:
i) Would the nuclear reactions of deuterons confined in a lattice be faster (and different) from the fusion of deuterons in a plasma?
ii) Could such nuclear reactions be detected?” [Fleischmann 1998a]

He was adhered to the d – d fusion reactions and looking for a mechanism to realize them in solids. He considered the Q.F.T (quantum field theory) is the savior for his expectation:

“- – – The scientific importance lies in the fact that whereas the Bohm-Aharanov Effect is a clear demonstration of the need to replace the C.M. (classical mechanics) by the Q.M. (quantum mechanics) paradigm, the Coehn-Aharanov Effect (indeed, “Cold Fusion” in general) is a demonstration of the need to go one step further to the Q.F.T. (quantum field theory) paradigm.” [Fleischmann 1998b (p. 123)]


[DOE 1989] DOE, “Cold Fusion Research,” November 1989, A Report of the Energy Research Advisory Board to the United States Department of Energy, Washington, DC 20585. DOE/S – – 0073, DE90 005611

[DOE 2004] “Report of the Review of Low Energy Nuclear Reactions.” This report is posted at the New Energy Times website:

[Fleischmann 1989] M, Fleischmann, S. Pons and M. Hawkins, “Electrochemically induced Nuclear Fusion of Deuterium,” J. Electroanal. Chem., 261, 301 – 308 (1989), ISSN: 1572-6657

[Fleischmann 1990] M. Fleischmann, “An Overview of Cold Fusion Phenomena,” ICCF1 lecture (March 31. 1990, Saturday), Proc. ICCF1, pp. 344 – 350 (1990)

[Fleischmann 1991] M. Fleischmann, “Present Status of Research in Cold Fusion,” Proc. ICCF2, Addition to the Conference Proceedings, pp. 1 – 10 (1991), ISBN 88-7794-045-X

[Fleischmann 1998a] M. Fleischmann, “Abstract” to “Cold Fusion: Past, Present and Future,” Proc. ICCF7

[Fleischmann 1998b] M. Fleischmann, “Cold Fusion: Past, Present and Future,” Proc. ICCF7, pp. 119 – 127 (1998). ENECO Inc., Salt Lake City, Utah, USA

[Hagelstein 2004] P.L. Hagelstein, M.C. H. McKubre, D.J. Nagel, T.A. Chubb, and R.J. Hekman, “New Physical Effects in Metal Deuterides,” (paper presented to DOE) posted at DOE website:

[Huizenga 1992] J.R. Huizenga, Cold Fusion―The Scientific Fiasco of the Century, University of Rochester Press, Rochester, NY, USA, 1992. ISBN 1-87882-207-1

[Kozima 1990] H. Kozima, S. Oe, K. Hasegawa, H. Suganuma, M. Fujii, T. Onojima, K. Sekido and M. Yasuda, “Experimental Investigation of the Electrochemically Induced Nuclear Fusion,” Report of Faculty of Science, Shizuoka University, 24, pp. 29 -34 (1990), ISSN 0583-0923

[Kozima 1994] H. Kozima, “Trapped Neutron Catalyzed Fusion of Deuterons and Protons in Inhomogeneous Solids,” Transact. Fusion Technol., 26, 508 – 515 (1994), ISSN: 0748-1896.

[Kozima 1997] H. Kozima, S. Watanabe, K. Hiroe, M. Nomura, M. Ohta and K. Kaki, “Analysis of Cold Fusion Experiments generating Excess Heat, Tritium and Helium,” J. Electroanal. Chem., 425, pp. 173 – 178 (1997), ISSN 1572-6657.

[Kozima 1998] H. Kozima, Discovery of the Cold Fusion Phenomenon – Development of Solid State-Nuclear Physics and the Energy Crisis in the 21st Century –, Ohtake Shuppan Inc., 1998, ISBN 4-87186-044-2.

[Kozima 2000a] H. Kozima. “Neutron Drop: Condensation of Neutrons in Metal Hydrides and Deuterides”, Fusion, Technol. 37, 253 – 258 (2000), ISSN 0748-1896.

[Kozima 2000b] H. Kozima, “Electroanalytical Chemistry in Cold Fusion Phenomenon,” Recent Research Development in Electroanalytical Chemistry, Vol. 2 – 2000, pp. 35 – 46, Ed. S.G. Pandalai, Transworld Research Network, (2000), ISBN 81-86846-94-8.

[Kozima 2004] H. Kozima, “Quantum Physics of Cold Fusion Phenomenon,” in Developments in Quantum Physics, Ed. V. Krasnoholovets and F. Columbus, Nova Science Pub. Inc., pp. 167 – 196 (2004), ISBN 1-59454-003-9.

[Kozima 2006] H. Kozima, The Science of the Cold Fusion Phenomenon, – In Search of the Physics and Chemistry behind Complex Experimental Data Sets –, 1st Edition, Elsevier, Amsterdam, 2006, ISBN-13: 978-0-08045-110-7.

[Kozima 2009] H. Kozima, “Non-localized Proton/Deuteron Wavefunctions and Neutron Bands in Transition-metal Hydrides/Deuterides,” Proc. JCF9, pp. 84 – 93 (2009), ISSN 2187-2260.

[Kozima 2012] H. Kozima, “Three Laws in the Cold Fusion Phenomenon and Their Physical Meaning,” Proc. JCF12 (Kobe, Japan, December 17 – 18, 2011), pp. 101 – 114 (2012), ISSN 2187-2260.

[Kozima 2013] H. Kozima, “Cold Fusion Phenomenon in Open, Nonequilibrium, Multi-component Systems – Self-organization of Optimum Structure,” Proc. JCF13 13-19, pp. 134 – 157 (2013), ISSN 2187-2260

[Kozima 2016a] H. Kozima, “From the History of CF Research – A Review of the Typical Papers on the Cold Fusion Phenomenon –,” Proc. JCF16, 16-13, pp. 116‐157 (2016), ISSN 2187-2260 and posted at the JCF website; html

[Kozima 2016b] H. Kozima and K. Kaki, “The Cold Fusion Phenomenon and Neutrons in Solids,” Proc. JCF16, 16-14, 158 – 198 (2016), ISSN 2187-2260 at the JCF website:

[Kozima 2017] H. Kozima, “The Sociology of the Cold Fusion Phenomenon – An Essay –,” Proc. JCF17, 17-13, pp. 148‐219 (2017), ISSN 2187-2260 and posted at the JCF website: html

[Kozima 2019a] H. Kozima and H. Yamada, “Characteristics of the Cold Fusion Phenomenon,” Reports of CFRL, 19-1, pp. 1 – 31 (2019) posted at CFRL website:

[Kozima 2019b] H. Kozima, “Inductive Logic and Meta-analysis in the Cold Fusion Phenomenon,” Reports of CFRL, 19-2, pp. 1 – 26 (2019) posted at CFRL website:

[Kozima 2019c] H. Kozima, “Development of the Solid State-Nuclear Physics,” Proc. JCF19, 19-3 , pp. 1 – 36 (2019) posted at CFRL website:

[Storms 2007] E. Storms, The Science of Low Energy Nuclear Reaction – A Comprehensive Compilation of Evidence and Explanations about Cold Fusion –, World Scientific, Singapore, 2007, ISBN-10 981-270-620-8

[Taubes 1993] G. Taubes, Bad Science―The Short Life and Weird Times of Cold Fusion, Random House Inc., New York, USA, 1993, ISBN 0-394-58456-2

List of papers published by the Cold Fusion Research Laboratory [html][.pdf]

(On March 23, 2019 at the 30th Anniversary of the Discovery of the CFP) —Hideo Kozima

On the 30th Anniversary of the Discovery of the Cold Fusion Phenomenon by Hideo Kozima [.pdf] was first published in the Cold Fusion Research Laboratory CFRL English News No. 107 (2019. 3. 1)

2019 LANR/CF Colloquium at MIT honors 30-years of breakthrough science

CMNS investigators and the science community will be celebrating the 30th-anniversary of the announcement of cold fusion at the LANR/CF Colloquium at MIT on the campus of the Massachusetts Institute of Technology in Cambridge, MA on Saturday, March 23 and Sunday, March 24, 2019.

These colloquiua have been hosted for many years by Dr. Mitchell Swartz of  JET Energy Incorporated, Dr. Peter Hagelstein of the Energy Production and Energy Conversion Group at MIT, and Gayle Verner, also of JET Energy.

The focus is the science and engineering of successful Lattice Assisted Nuclear Reaction [LANR] systems, including the important roles of the lattice and material science issues, as well as electrophysics.

Dr. Swartz believes engineering, along with the benefits of teaching its principles, is vital for success of attaining active LANR systems.

He has previously demonstrated the importance of this with his engineered systems including his metamaterial high impedance aqueous PHUSOR®-type technology that was shown on the MIT campus in 2003 as part of  ICCF10, and, his dry preloaded NANOR®-type component technology demonstrated in 2012 at the Cold Fusion 101 IAP Course at MIT, which ran for 3 months thereafter.

“Where is there science without engineering?” he asks.

“When we first made ‘cat whiskers’ back in the 50s using galena (a mineral) and a perpendicular wire positioned on it to make a junction “diode” – that was considered high-tech.  Now look how far we’ve come with the engineering in that technology.” 

“Similarly,” says Dr. Swartz, “in this clean energy-production field, there is much data heralding that applied engineering has also improved results: including incremental power gain, total output power, and excess energy density which have all increased; supplemented by improving controls and many new diagnostics.”

“Research takes meticulous effort, taking the time to write it up, and if you’re lucky – submitting it and getting feedback. So that’s why we’re having a posters at the colloquium.”

Updates will be posted here and 2019 LANR/CF Colloquium website at:

Attendance to the Meeting requires pre-Registration. The room size for the Colloquium is space-limited, and due to this limited size, there will be no walk-ins.

Note that the DEADLINE for REGISTRATION is March 14th.

See accommodations options 2019 LANR/CF Hotel Options [.pdf]

See closest hotels to campus on google maps.

AGENDA and Tentative Schedule
LANR Science and Engineering: From Hydrogen to Clean Energy Production Systems

I. Experimental Confirmations of LANR/CF
A, Energy Production:
Excess Heat/Tardive Thermal Power (Heat after Death)
Helium Production/Other Products
Penetrating Emissions/Particles
Distinguishing Optical/Radiofrequency/Acoustic Signatures
Engineering Methods of Activation/Control
Engineering of Applied Magnetic Field Intensities

B. Energy Conversion:
Stirling LANR Engines/Propulsion Systems
Thermoelectric Conversion/Direct LANR Electrical Generation
Rotating Linked LANR Magnetic Systems
Acoustic LANR Conversion Systems

II. Other Experimental Support for LANR/CF
Supporting Confirmations (eg Fract. And Comb Phonon Expts)

III. Theories Supporting/Consistent with LANR/CF
Lattice/Metallurgical/Material Science

IV. Engineering Applications from/of LANR/CF

V. Reconciliation of Success with Policy/Obstruction

See the previous 2014 LANR/CF Colloquium lectures here, held on the 25th Anniversary of the announcement of cold fusion.

Winning LENR essay published in Navy magazine

A Navy essay contest has landed a LENR article with second prize and featured in the September 2018 issue of U.S. Naval Institute Proceedings magazine (members only content online –.pdf here).


Low Energy Nuclear Reactions: A Potential New Source of Energy to Facilitate Emergent/Disruptive Technologies [.pdf] by M.Ravnitzky was the second place winner in The Emerging & Disruptive Technologies Essay Contest sponsored by the U.S. Naval Institute, cosponsored with Leidos Corporation.

He is also the Editor of Steven Krivit’s three volumes on the history of LENR, with its unfortunate repudiation of the name “cold fusion”, largely by belief in a specific theoretical model of the reaction focusing on electro-weak interactions. Sadly, the idea is yet unconfirmed, and just one of a half-dozen contenders for theoretical models, none of which can name a recipe to create and scale the reaction.

Nevertheless, this winning essay makes a strong case to the Navy advocating for research in LENR technology. The U.S. Navy adopted nuclear power early on submarines, and currently needs safe and clean solutions to power generation, just like everybody else.

Read The Emerging & Disruptive Technologies Essay Contest Second-place Winner Low Energy Nuclear Reactions: A Potential New Source of Energy to Facilitate Emergent/Disruptive Technologies [.pdf]

Cold Fusion Now! podcast with ISCMNS Chief Exec William Collis

March, 2018 — The Cold Fusion Now! podcast presents William Collis, the Chief Executive of the International Society for Condensed Matter Nuclear Science, the association that serves cold fusion/LENR scientific researchers globally.

William has a degree in Biochemistry from the University of Oxford and is an expert in atomic weights. After a career in embedded software, his passion for nuclear physics led him to investigate the theoretical aspects of the LENR reaction.

He is part of the original group that founded the International Society for Condensed Matter Nuclear Science in 2003 to organize the global group of researchers with conferences, a journal, and scientific paper archive

William Collis talks with Ruby about the plans for the Society, and where experimental LENR research should target to bring a theoretical model into focus.

Listen to episode 006 at our website or subscribe in iTunes.

Patreon is a platform for supporting creators like us. If you have two loaves of bread, won’t you trade one to feed your soul? Visit us on our page at Patreon and pledge your support for a ultra-clean energy future. And thanks for listening. Become a Patron!