Cold fusion reactor heats room in Sapporo

Modifications to the cold fusion energy reactor designed by Tadahiko Mizuno have dramatically increased excess heat production. Thermal power output of the cell is now able to exceed the air-flow calorimeter’s heat removal capacity of 1 kilowatt.

This is reported in the paper Increased Excess Heat from Palladium Deposited on Nickel [.pdf]. Co-author Jed Rothwell will describe the spectacular results at the 22nd International Conference on Condensed Matter Nuclear Science ICCF-22 this September 2019 in Assisi, Italy.

When the input is 300 Watts heat, thermal power output is estimated to be between 1 – 3 kilowatts. This is based on the fact that Prof. Mizuno heated his room in Sapporo last winter with the cold fusion reactor, and he felt the room’s temperature to be as warm as when using a 3 kilowatt electric heater.

Tadahiko Mizuno’s R20 reactor heats a room in Sapporo. Graphic from Increased Excess Heat from Palladium Deposited on Nickel.

The jump in power occurred after he placed the heater that regulates the reaction at a new location inside of the cell, as well as new and different applications of pressure to the reactor.

But he also changed the way he made the active cathode material.

Nickel-mesh physically rubbed with palladium rod provides the reactant

Previously, to produce active nickel-mesh cathodes Prof. Mizuno, lead researcher at Hydrogen Engineering Application & Development HEAD, had been using glow discharge to “erode the center of the palladium electrode and sputter palladium on the nickel mesh”. This method could reliably generate 232 Watts excess heat with 248 Watts input, but it took months of applying the discharge to complete an active cathode. He needed a new method of applying palladium to the nickel-mesh.

Old cruciform design used glow discharge to prepare the cathode for reaction. Excess heat was reliable, but the whole process took months. Graphic from Excess Heat from Palladium Deposited on Nickel.

Electroless deposition gave good results, but the chemical solution was expensive. So, Prof. Mizuno started physical rubbing a palladium rod on the nickel-mesh to save money.

Three separate nickel mesh pieces are prepared by rubbing “vigorously” with a palladium rod. A careful WARNING is included: the procedure should take place in a glove box or appropriate facility as the fine particles of nickel dust are toxic and pose a health danger. Only those “skilled in the art” should attempt reproduction.

Using a glove box for safety, a palladium rod is rubbed one way, and then, 90 degrees the other way until 15-20 milligrams of palladium is deposited. Graphic from Increased Excess Heat from Palladium Deposited on Nickel.

The three mesh are carefully weighed during rubbing until 15-20 milligrams of palladium is deposited on each mesh. Then, the three mesh are stacked and rolled up. Inserted into the steel cylindrical reactor, they are unrolled inside, and spring-out against the cylinder walls.

Three palladium-rubbed nickel mesh against the interior walls of the reactor. Graphic from Increased Excess Heat from Palladium Deposited on Nickel.

This new method of cathode preparation is faster than glow discharge, however, first attempts to activate the mesh saw excess power results dropping to 12 Watts, about 12% excess heat, a marginal result.

Heat regulates the reaction

Then, in this last year, Prof. Mizuno changed the design. A sheath heater was installed inside the center of the cylindrical reactor R20.

Sheath heater now sits symmetrically in the center of the cylinder of the R20 design, heating the unit internally. Graphic from Increased Excess Heat from Palladium Deposited on Nickel.

That design change, along with “changes in the methods and pressures”, has “apparently enhanced the reaction, producing the results shown in Fig. 6.”

The R20 power results raw (in gray), and adjusted for heat loss through the walls of the calorimeter (in orange). Graphic from Increased Excess Heat from Palladium Deposited on Nickel.

Jed Rothwell was surprised at the result of moving the heater. He says, “I might have moved it inside just to reduce overall input power, but I had no idea that might increase output.”

Observations on this system has led to some important conclusions.

“First, the excess heat should be an exponential function of absolute temperature,” says Mizuno. “Second, the deuterium concentration in nickel affects the amount of excess heat. Third, the influence of deuterium pressure is small. Also, excessive heat generation requires treatment of the nickel surface. Also, there is a need for dissimilar metal layers. That’s all.”

The R20 is described as the “latest and most effective reactor”. After two hours of operation, it provides a stable ~250 Watts thermal excess power output when the input is a 50 Watt heater, and power generation can continue indefinitely.

However, an input of 300 Watts thermal will produce heat overwhelming the lab’s air-flow calorimeter heat removal capacity. There is an effort to test the R20 reactor in a bigger calorimeter in time to report definitive power output levels at ICCF-22 in September.

Air-flow calorimeter withstands scrutiny

The air flow calorimetry Prof. Mizuno used to measure the heat from the R20 has not changed since the report last year. Calorimeter specifications are described in detail in the previous paper Excess Heat from Palladium Deposited on Nickel [.pdf], which was presented at the ICCF-21 conference. Jed Rothwell, who has worked with Mizuno for over 30 years, invited the CMNS community to help find weak spots, and he has investigated every critique. So far, the calorimetry appears tight.

“Jed’s contribution is huge,” says Prof. Mizuno. “He looked at and analyzed my experimental results in detail, and gave me appropriate advice. He also corrected my dissertation, corrected my analysis errors and corrected sentences. I think Jed is a collaborator.”

Tadahiko Mizuno has shared specific details of these successful experiments in his papers and he is encouraging those “skilled in the art” – and with the proper equipment and protection from toxic nickel dust – to replicate the results. He promises to help replicators, too.

Jed Rothwell has heard from several people planning or starting replications. “Some of them seem to be trying new approaches,” he says. “I am following Dennis Cravens and one other closely. I think they are sticking to the protocol, except that one of the reactors is considerably smaller, so the mesh is only 2″ wide. I hope that has no effect on the results. We’ll see.”

Dr. Dennis Cravens, LENR researcher from New Mexico, is one of those who plans to replicate the active nickel-mesh cathode material process, though he’ll use a different calorimeter.

“Yes, I will be trying a replication in a general way,” he says. “But I have no real support in that effort so it may take some time. I have built an air-flow system using controlled temperature intake. But I have never been comfortable with air-flow systems after using one for checks of molten salt systems. They provide many “targets” for others to “throw darts at” and the questions and “advice” never ends. I am presently assembling a 1 meter long Seebeck for a future attempt.”

Hope is regulated with reality, and Jed Rothwell sums up the feeling of someone who has seen great news come and go, without a technology materializing.

“Once again, cold fusion barely survived. If this cannot be replicated, it may not survive. I do not know of any other approaches that could be widely replicated,” he says. “Without widespread replication, the field will surely die.”

“I hope this can be replicated.”

Says Prof. Mizuno, “I think the most important thing is to know how to generate the excess heat. In addition, it is important that there is a control factor.”

Earthquake almost ended research

Less than one year ago, Tadahiko Mizuno almost quit research after 29 years when a damaging earthquake hit the lab, destroying sensitive equipment.

“The earthquake in the early morning of September 6 was awful”, recalls Tadahiko Mizuno. “The damage was severe; the central part of the SEM is not usually fixed in order to not sway around from earthquakes. This caused a disaster, and the central electron tube hit the surrounding stand and broke. Repair cost is a lot of money. Other than that, machinery was broken. I was unable to work for several months.”

Dennis Cravens started a GoFundMe page and brought the CMNS community together to fundraise just enough cash to clean-up a bit, and continue operations.

“It was an outpouring of help by many in the field,” says Dr. Cravens. “We all have had set backs and often feel alone, alienated, ridiculed and sometimes think of giving up. If we can help each other, we just may have a chance to change the world in a good way.”

As a thank-you, Prof. Mizuno gave small reactor to the community, though not the new nickel-mesh version. Sindre Zeiner-Gundersen, who has been getting his PhD while working with Drs. Leif Holmlid and Sveinn Ólafsson on ultra-dense hydrogen, is now in preparation to test the reactor.

Says Zeiner-Gundersen, “Mizuno is one of the leading scientists in this area and brings great research, results and provides data to the field. He is a true pioneer. The reactor I have is a closed system and should produce excess heat just by applying deuterium and heat to the materials inside. ”

“I’m finishing the last programming on calorimetry and construction of the calorimetry system now, so I will be testing this fall.”

Of course, the small funding from the CMNS community has ran out this past February and Mizuno says, “Now I am testing with debt. The amount is 30 million yen. If this remains the case, I have to leave the company in a couple of months.”

But if replications confirm the kilowatt effect, funding won’t be a problem, and Prof. Mizuno isn’t waiting around. He’s put reactors that he calls HIKOBOSHI in the hands of users, for other labs to independently test.

“I rented and sold 12 CF furnaces to Japan and overseas. They are collecting data and having a lot of data, I am going to announce the data.”

“I have named these reactors as HIKOBOSHI. This means the star Altair. I also like that I feel the meaning in Japanese, which is to “flood the lights”. Hiko is also the last kanji notation of my name.”

Had Tadahiko Mizuno not continued research, this breakthrough bump in kilowatt power would have been unrealized. Now when the world needs a zero-carbon option, the HIKOBOSHI reactor is a step closer to fulfilling that mission.

Dennis Cravens says, “You are guided by your experience and your gut and I only hope that others follow their dreams and come to a greater understanding of the process and possibly, just possibly, find the key to a reliable working system. “

The 22nd International Conference on Condensed Matter Nuclear Science on the 30th Anniversary of the Announcement of Cold Fusion in Assisi, Italy. To register, go to https://iscmns.org/iccf22/

Stephen Bannister on the Cold Fusion Now! podcast

Episode 22 of the Cold Fusion Now! podcast features Dr. Stephen C. Bannister, an Economist at University of Utah Salt Lake City. Dr. Bannister received his undergraduate degree from the University of Illinois, Champaign and then spent a career in high technology, becoming Director of Novell in Provo, Utah.

He then returned for a PhD in Economics at University of Utah where most of his research centers around energy and economic activity and is strongly connected to climate change.

Listen to Dr. Stephen Bannister on the Cold Fusion Now! podcast with Ruby Carat on the podcast page here.

Approaching the 30th anniversary of the announcement of cold fusion by Drs. Martin Fleischmann and Stanley Pons on March 23, 1989, Ruby asked Dr. Bannister if there was any activity on the campus to commemorate the event.

“If you go to the chemistry department and bring up this topic – which I have done – they come back and say “Oh no no no, that’s pathological science, and we don’t want to talk about it much”, says Dr. Bannister, “and I’m not sure that anyone in the physics department has much of an interest in [cold fusion] today. I don’t know that, but I’ve talked to some of the grad students in physics and there’s no awareness of it at that level. However, there is some interest in the Department of Earth Sciences.”

Dr. Bannister learned that a former post-doc at Los Alamos National Lab, who had prepared a report on the LENR work of Dr. Edmund Storms, had subsequently become Dean at the College of Earth Sciences at University of Utah. He and Dr. Bannister are “now in communication thinking about how to begin to advance the rehabilitation of the reputations of Drs. Fleischmann and Pons, and do some other things, although its not very formal yet.”

The National Cold Fusion Institute, funded right after the 1989 announcement, has an archive housed in the UU Library, offering another chance to bring more material to light.

Listen to Dr. Stephen C. Bannister discuss the relationship between energy inputs and economic output, and how breakthrough energy fits in, on the Cold Fusion Now! podcast with Ruby Carat on our podcast page here.


The LANR/CF Colloquium happens this weekend!

Go to http://theworld.com/~mica/2019colloq.html to register now!

Icebergs in the Room? Cold Fusion at Thirty

This is a re-post of Icebergs in the Room? Cold Fusion at Thirty by Huw Price and first published here.

From aviation to zoo-keeping, there’s a simple rule for safety in potentially hazardous pursuits. Always keep an eye on the ways that things could go badly wrong, even if they seem unlikely. The more disastrous a potential failure, the more improbable it needs to be before we can safely ignore it. Think icebergs and frozen O-rings. History is full of examples of the costs of getting this wrong.

Sometimes the disaster is missing something good, not meeting something bad. For hungry sailors, missing a passing island can be just as deadly as hitting an iceberg. So the same principle of prudence applies. The more we need something, the more important it is to explore places we might find it, even if they seem improbable.

We desperately need some new alternatives to fossil fuels. To meet growing demands for energy, with some chance of avoiding catastrophic climate change, the world needs what Bill Gates called an energy miracle – a new carbon-free source of energy, from some unexpected direction. In this case it’s obvious what the principle of prudence tells us. We should keep a sharp eye out, even in unlikely corners.

Yet there’s one possibility that has been in plain sight for thirty years, but remains resolutely ignored by mainstream science. It is so-called cold fusion, or LENR (for Low Energy Nuclear Reactions). Cold fusion was made famous, or some would say infamous, by the work of Martin Fleischmann and Stanley Pons. At a press conference on March 23, 1989, Fleischmann and Pons claimed that they had detect excess heat at levels far above anything attributable to chemical processes, in experiments involving the metal palladium, loaded with hydrogen. They concluded that it must be caused by a nuclear process – ‘cold fusion’, as they termed it.

Many laboratories failed to replicate Fleischmann and Pons’ results, and the mainstream view since then has been that cold fusion was ‘debunked’. It is often treated as a classic example of disreputable pseudoscience. But it never went away completely. It has always had defenders, including some scientists at very respectable laboratories. They acknowledged that replication and reproducibility were difficult in this field, but claimed that most attempts on which the initial dismissal had been based were simply too hasty.

Such work continues today, as cold fusion approaches its thirtieth birthday. A recent peer-reviewed Japanese paper lists seventeen scientific authors, from several major universities and the research division of Nissan Motors. These authors report ‘excess heat energy’ which ‘is impossible to attribute … to any chemical reaction’ (with good reproducibility between different laboratories). The field has also been attracting new investors recently (including, some claim, Bill Gates himself).

These seventeen Japanese scientists might be mistaken, of course. Scientists – not to mention investors! – often get things wrong. But their work is only the tip of a very substantial iceberg. If there was even a small probability that they and the rest of the iceberg were on to something, wouldn’t the field deserve some serious attention, by the prudence principle with which we began?

When I wrote about these issues in Aeon three years ago, I argued that the problem is that cold fusion is stuck in a reputation trap. Its image is so bad that many scientists feel that they risk their own reputations if they are seen to be open-minded about it, let alone to support it. That’s why the work of those Japanese scientists and others like them is ignored by mainstream science – and why it doesn’t get the attention that simple prudence recommends.

The reputation trap is nicely illustrated by the tone of a New Scientist editorial from 2016. It accompanied a fairly even-handed article describing recent increases in interest in LENR, from investors as well as some scientists. The editorial concludes:

There’s still no compelling reason to think cold fusion will work. Let those with money to burn take the risk and, if proven right, the rewards for their chutzpah too. For the rest of us, cold fusion is better off left out in the cold.

There’s no mistaking the tone, but if we translate it to the safety case the logic has a chilling familiarity: ‘There’s no compelling reason to think that there will be icebergs at this latitude. Let those with money to burn take the slower route to the south, and the rewards if they turn out to be right.’

The fallacy here is obvious. It puts the burden of proof on the wrong side. What matters is not whether there is a compelling reason to think that there are icebergs, but whether there is compelling reason to be confident that there are not. That’s what’s distinctive about these safety cases, and it stems from the high cost of getting things wrong – hitting the icebergs, or missing the islands.

In the safety case, we know what happens when reputation and similar cultural and psychological factors get in the way of prudence. Icebergs are unlikely, and our reputation is at stake, so full speed ahead! NASA fell for precisely this trap in the case of the Challenger disaster, ignoring warnings about the O-rings. Something similar underlies the tone of the New Scientist editorial, in my view – a kind of misplaced rigidity, engendered in this case by the norms of scientific reputation.

Reputation plays an indispensable role in science, as an aid to quality control. But sometimes it gets thing wrong. There are famous cases in the history of science in which new ideas were ignored or ridiculed, sometimes for decades, before going on to win Nobel prizes. (Classic examples include the work of Barbara McClintock on mobile elements in genetic material, and the discovery by Australian scientists Barry Marshall and Robin Warren that stomach ulcers are caused by a bacterium. )

Usually this doesn’t matter very much – science got there in the end, in these famous cases. But it is easy to see how it might be a problem, where prudence requires that we take unlikely possibilities very seriously. If what’s at stake is a serious risk, the normal rate of progress in science – one funeral at a time, as Max Planck put it, commenting on science’s conservatism – might simply be too slow.

So the normal sociology of scientific reputation may be pathological in special cases – cases in which the cost of wrongly dismissing a maverick idea is especially high. In my Aeon piece I suggested that LENR is such a case. I proposed that to offset this pathology we need some carefully targeted incentives – an X-Prize for new energy technologies, say. To mainstream scientists this idea sounds absurd, even disreputable, at least in the case of cold fusion. But that’s just the pathology talking, in my view – and the rational response to the pathology is to hack it and work around it, not to give way to it.

Not surprisingly, my article was controversial – some commentators wondered what it would do to my own reputation! Critics didn’t disagree with the principle that we need to take low probability risks (or potential missed opportunities) seriously, when the cost of overlooking them would be high. But many denied that cold fusion falls into this category. They felt that is so unlikely, so discreditable, that we can safely leave it in the reputation trap. (Sometimes this response came with considerable vehemence, even from friends.)

How likely would cold fusion have to be, to be worth serious attention? This is debatable, but a generous 5% should be uncontroversial. (Who would argue that we should ignore a 1 in 20 chance of some interesting new physics, let alone carbon-free energy?) My critics thought that the probability that cold fusion is real is much lower than that.

I felt that many of these critics were simply not paying attention. If one took the trouble to look, there was a lot of serious work, including recent work, suggesting real physical anomalies. If we ask not whether this evidence is entirely compelling, but simply whether it lifts the field above a very low attention threshold (say 5%), the answer seemed to me to be obvious. We shouldn’t be ignoring this work. (Instead, we should be trying to hack the pathology that makes it so easy to dismiss it.)

In addition to scientists at respectable institutions who work on LENR, there are also some inventors and entrepreneurs who claim to be developing practical LENR-based devices. I mentioned two in my 2015 article. One was a controversial Italian engineer, Andrea Rossi. His claims in 2011 had attracted me to the topic in the first place, and in 2015 he seemed to be doing well. The other was a less colourful inventor, Robert Godes, whose Berkeley-based company Brillouin Energy also claimed to be on a path to a commercial LENR reactor.

My critics were confident that both Mr Rossi and Mr Godes must be frauds, or else deeply confused. What other possibilities are there, after all, if – as my critics were convinced – there’s no genuine LENR? I thought that this dismissal was far too hasty. I wasn’t certain by any means that Rossi or Godes did have what they claimed, but I thought that the probability was well above a reasonable attention threshold (given what success might mean).

With several critics, these differences of opinion led to bets, at long odds. I would win the bets if, after three years, at least one of Rossi or Godes had ‘produced fairly convincing evidence (> 50% credence) that their new technology that generates substantial excess heat relative to electrical and chemical inputs.’ If my opponents and I couldn’t agree whether this is the case, the question would go to a panel of three judges for arbitration. (Either way, the proceeds will support research on existential risk.)

The three years is now up, so how am I faring? About Rossi, I am happy to concede that he hasn’t made it to the finishing line, even at a modest 50% credence. I think there is still some reason to think that that he may have something, based in part on claimed replications by far less colourful figures. But there is also evidence of dishonesty, especially in his dealings with his US backer, Industrial Heat.

Luckily for me, I backed the ants as well as the grasshopper. About Godes’ Brillouin Energy (BEC) the news is much better. There are now three positive reports (from 2016, 2017, and 2018) by an independent tester, Dr Francis Tanzella, at the Menlo Park lab of SRI International. The first report already confirmed low levels of excess heat, and important progress in reproducibility:

This transportable and reproducible reactor system is extremely important and extremely rare. These two characteristics, coupled with the ability to start and stop the reaction at will are, to my knowledge, unique in the LENR field to date.

The more recent reports describe steady progress in two directions. First, a modest improvement in excess heat as measured by the the so-called Coefficient of Performance (COP) – the ratio of output power to input power. Second, a large increase in the absolute level of excess heat, from a few milliwatts in 2016 to several watts in early 2018.

The last of Dr Tanzella’s three reports covers the period to July 2018. Since then, BEC themselves have claimed even better results – consistent output power around twice the level of input power, with excess heat of around 50 watts.

What are the options, if we are not to take these reports at face value? Essentially, one needs to dismiss as incompetent or fraudulent not only Mr Godes and his BEC team, but also Dr Tanzella and his SRI colleagues. However, as the 2018 report notes, SRI ‘brought over 75 person-years of calorimeter design, operation, and analysis experience to this process’, much of it in the field of LENR. SRI, and Dr Tanzella himself, are among the most experienced experts in the field.

Accordingly, it seems to me greatly more likely than not that BEC do have what they claim – in the words of my bet, a device that ‘generates substantial excess heat relative to electrical and chemical inputs’. Readers wishing to make up their own minds should study Dr Tanzella’s reports, and listen to a recent podcast in which he speaks about his work. (The same site also offers a recent interview with Robert Godes, in which he discusses BEC’s latest results.)

Some critics will say that Dr Tanzella must be wrong, because the claims are simply so unlikely. That would be an understandable view if BEC’s claims were a complete outlier, unrelated to any previous work. But as I said, there’s an iceberg’s worth of work beneath it, much of it from eminently serious sources (people and institutions). Only someone who hadn’t taken the trouble to look at this work could think of BEC as an outlier.

As a very small sample from this iceberg, see this and this for overviews of long programmes of work by two US laboratories, SRI International themselves and the Space and Naval Warfare (SPAWAR) lab, San Diego, over the 1990s and 2000s; this for a short summary of the recent Japanese work mentioned above; and this and this for two additional recent technical papers. All these pieces report results not explicable by known chemical processes. This site offers hundreds of other papers.

Finally, for our Norwegian readers, there’s this recent 45 page report by the Norwegian Defence Research Institute. The author, an electrochemist, concludes that in his view ‘LENR is a real phenomenon, the development of which ought to be closely watched.’ He says that the alternative ‘is to believe in a conspiracy of independent researchers at a number of different institutions’, and adds that for the original Fleischmann and Pons reactions in particular, ‘the documentation is highly convincing.’

The question I want you to ask yourself – after examining this material – is not whether you agree with me that BEC has made it over the finishing line specified in my bets. That’s an interesting question, but not the important one. The crucial issue is whether LENR in general makes it over a much lower bar, the one that recommends it for serious attention, given how desperate we are for Bill Gates’ energy miracle. If you don’t agree with me even about the low bar, I’m wondering what you take yourself to know, that all these authors do not, that could possibly justify such certainty?

If you do agree with me about the low bar, I encourage you to join me in trying to hack the reputation trap. It may be too much to expect mainstream science to scan the horizon very far to port and starboard. That’s how science works, and rightly so, in normal circumstances. But if that’s where the energy-rich islands might be, that’s the direction someone needs to be looking. So we need some unconventional thinkers – especially young, brilliant, sharp-eyed thinkers – and we need to cheer not sneer at their efforts.

In my view, it’s as much a mistake to let reputation blind us to prudence in this case as it is was for the icebergs and O-rings. True, it isn’t necessarily so catastrophic.  But unlike the Titanic and the Challenger, the planet has all of us on board. So let’s loosen our collars a little, remind ourselves of the virtues of epistemic humility, and try to encourage our energy mavericks.

For the moment, as cold fusion turns thirty, it remains a black sheep of the scientific family. But as the history of science shows us, it’s often black sheep who bring home black swans. We don’t know whether cold fusion will follow the same path. We do know that it’s in the whole family’s interests to show it some warmth. For safety’s sake, cold fusion needs to be cool.

Read the original article Icebergs in the Room? Cold Fusion at Thirty by Huw Price here.

* * *

Huw Price is Bertrand Russell Professor of Philosophy and a Fellow of Trinity College at the University of Cambridge. He is Academic Director of the Leverhulme Centre for the Future of Intelligence, and a co-founder with Martin Rees and Jaan Tallinn of the Centre for the Study of Existential Risk. Before moving to Cambridge he was ARC Federation Fellow and Challis Professor of Philosophy at the University of Sydney, where from 2002—2012 he was founding Director of the Centre for Time.

Yasuhiro Iwamura on the Cold Fusion Now! podcast

Dr. Yasuhiro Iwamura is the guest on the Cold Fusion Now! podcast with Ruby Carat. Dr. Iwamura is a Research Professor in the Condensed Matter Nuclear Science division at the Research Center for Electron

Photon Science at Tohoku University. He has been dividing his time there between engineering a second Metal Hydrogen Energy generator with Clean Planet Inc. , as well as continuing his signature transmutation work with Mitsubishi.

Listen to Yasuhiro Iwamura on the Cold Fusion Now! podcast with Ruby Carat here on our Podcast page.

After graduating from the University of Tokyo in 1990 with a degree in Nuclear Engineering, he received a research scientist position with Mitsubishi Heavy Industries. “After graduate school, I entered fundamental research laboratory of Mitsubishi Heavy Industries. At that time, Japan had a good economy, and fundamental research was very active,” says Dr. Iwamura.

“I had been interested in cold fusion and seeking a chance to propose a research theme related to cold fusion. Fortunately, ICCF-3 was held at Nagoya in Japan in October 1992, and I attended it. I talked with many researchers at the conference and I was convinced that cold fusion was real. So I proposed a research plan to my laboratory and it was approved.”

“At the beginning of my research, we mainly did gas-loading and electrolysis type experiments, and finally we reached the permeation in this transmutation method.”

Nuclear transmutation work is replicated

The nuclear transmutations method developed by Dr. Iwamura and his team at Mitsubishi uses a host material described as a “nano-structured thin-film composed of palladium and calcium oxide and palladium substrate, with a target element” then planted between the layers.

A typical target element of Cesium is then transmuted to Praseodymium. Barium has been transmuted into samarium and tungsten into platinum.

Dr. Iwamura cannot explain the mechanism of the reaction behind these results, but he does reveal an experimental fact that should give theorists a clue in trying to construct a model of the reaction.

“We observe 2 or 4 or 6 deuterons make fusion for the target materials. The exact mechanism for the transmutation is not clear, of course, but I speculate that two deuterons are related to helium.”

“A helium atom consists of two protons and two neutrons, and two deuterons consists of two protons and two neutrons. So I suspect that this kind of mechanism exists in this type of transmutation reaction.”

Dr. Iwamura believes that a “very small amount of foreign element like impurity plays a very important role to induce condensed matter nuclear reactions”, too.

In the podcast, he gives an example. “In the case of our type of transmutation reactions, if we put calcium oxide onto the palladium thin-film, near the surface area, transmutation reactions occur, but if we use palladium only, we cannot observe a transmutation reaction.”

“It’s just a speculation, but I speculate that the interface between the foreign element, like calcium oxide, and the main element like the palladium, at the near surface plays a very important role. The mechanism is not so clear, but I suspect this kind of mechanics is behind condensed matter nuclear reactions.”

Transmutation work provides method for radioactive waste cleanup

Yasuhiro Iwamura continues the Mitsubishi transmutation work at Tohoku with support from both Mitsubishi and Clean Planet, Inc. Clean Planet CEO Hideki Yoshino has organized several collaborative efforts with academia and industry in Japan with the hopes of engineering an ultra-clean energy technology, and, ridding the globe of the tons radioactive waste by transmuting it to benign materials.

Dr. Iwamura says, “So even though I’ve moved to Tohoku University from Mitsubishi Heavy industries, I continue to make transmutation experiments using radioactive isotope Cesium-133 at Tohoku University.”

“If this type of transmutation reaction can be applied to radioactive isotopes, it will be possible to get rid of the radioactivity of nuclear waste. The transmutation of a radioactive element is beneficial to society, because many nuclear reactors are working all over the world and generate toxic radioactive waste, and getting rid of toxic radioactivity from Fukushima area in Japan is also beneficial to our society.”

This transmutation work was replicated by other institutes such as Toyota R&D, and is still in its early research stages, but the effort, along with the MHE excess heat project, will benefit greatly from the recent shares of Clean Planet bought by the Mitsubishi Estate Company.

“The stronger financial base of Clean Planet is beneficial to my Tohoku team and to make wider choices towards commercialization”, says Iwamura. “So of course it’s very good, and we’re very grateful to the Mitsubishi Estate companies.”

Of course the commercialization effort includes MHE generator, too.

MHE energy profiles replicated with same samples

“My colleague Ito and I did not have much experience with excess heat experiments before we moved to Tohoku University, because our work at Mitsubishi Heavy Industry was only transmutations. So it was a good chance to learn excess heat generation experiments using the MHE apparatus funded by the Japanese government organization NEDO, the New Energy Development Organization.”

The original MHE generator is located at Kobe University, and is the work of Dr. Akito Takahashi, Dr. Akira Kitamura, as well as a team of scientists and graduate students.


Read our interview with Dr. Akito Takahashi on the Cold Fusion Now! blog here.


A second Metal Hydrogen Energy device at Tohoku Univeristy designed to replicate results of the first MHE generator located at Kobe University. Graphic: Yasuhiro Iwamura ICCF21 presentation file

“The objective of our collaborative research is to clarify the existence of the anomalous heat generative phenomenon and to confirm reproducibility of the phenomenon. For the purpose, we did not change the design of the experimental apparatus intentionally. So, the second Metal Hydrogen Energy device located at Tohoku University is nearly equal to the first apparatus at Kobe University.”

“Of course we have some different points, for example our experimental apparatus is equipped with a larger number of measurement points, and some couples in our apparatus are slightly different to the first one, but basically, we did not change the design of the experimental apparatus intentionally to show the reproducibility of this phenomenon.”

Dr. Iwamura presented the latest second MHE generator results at ICCF-21 conference reporting excess heat results that were replicated by other labs using the same samples.


Watch Dr. Yasuhiro Iwamura’s presentation at ICCF-21 here on the ICCF-21 Youtube channel. Follow the link to download the presentation file in .pdf.


“Anomalous excess heat generations were observed for all the active samples at elevated temperature, about 150C-350C degrees Centigrade, and the amount of anomalous heat generation per hydrogen atom ranges from 10 eV per hydrogen to 100 eV per hydrogen or deuterium, which could not be explained by any known chemical process.”

Excess heat results for one sample run on the second MHE generator. Graphic: Yasuhiro Iwamura ICCF21 presentation file.

Also, there were “coincident burst-like increased pressure -and gas temperature- events of the reaction chamber, which suggested sudden energy release in the reaction chamber.”

“These results were observed for all experiments using the copper-nickel-zirconium material with H2 gas. Also, very large local bursts of energy release were obtained as evidenced by the broken zirconia beads used as a medium for the nano-particles.”

“Excess heat experiments using the same material at Kobe and Tohoku Universities showed similar experimental results, and the qualitative reproducibility between Kobe and Tohoku was very good.”

Close communication is key to successful replication

The success of the Japanese LENR research program is unmatched by any other country on the globe, and while support for LENR is not universal within governmental organizations, the continued positive gains provided by the researchers there has made it easier for mainstream organizations to lend a helping hand in a country with big energy needs.

In the cross-disciplinary field of condensed matter nuclear science, collaborative research requires the coordination of scientists from different fields, and Dr. Iwamura feels that “good and frequent communication between Japanese groups is the key” to successful replications.

“For example, I know Professor Takahashi and Professor Kitamura very well, and I ask them frequently about experimental device and method in detail. And during the NEDO project, our research groups often held meetings, and exchanged detailed information. So communication is the key, I think.”


Listen to Yasuhiro Iwamura on the Cold Fusion Now! podcast with Ruby Carat here on our Podcast page.


Patreon is a platform for supporting Creators like Cold Fusion Now!. You can pledge as little as a dollar per episode and cap your monthly spending to a limit you set. We are a totally self-funded LENR advocacy group that can only operate with your support.

When we deliver, you reward the work!

Visit us on Patreon to sign-up and become a Patron!

Atomic Love and THANKS to our new and continuing supporters. We are making it happen for a breakthrough energy future because of You. THANK YOU to the US, Great Britain, and Italy for your recent contributions.

If you haven’t subscribed yet, go to our website at coldfusionnow.org/sponsors/ to be a Cold Fusion Now! SuSteamer or sign-up on Patreon.

The Cold Fusion Now! Collective will be attending the LANR/CF Colloquium on the 30th Anniversary of the announcement of cold fusion! We’ll be collecting video for our documentary on the field – hope to see you there

Andrea Rossi EcatSK demo

“The EcatSK is available now for industrial applications. If you want safe, reliable, competitively priced heat, we encourage you to contact us.”

That was the announcement on the EcatSK demonstration broadcast live on the Network at http://www.ecatskdemo.com/ January 31, in an event dedicated to Swedish scientist Dr. Sven Kullander.

From the Press Release:

“The E-Cat SK produces kilowatts of energy while consuming only grams of inexpensive and abundant fuel (hydrogen, nickel, lithium) over a period of six months.”

A screenshot from EcatSKdemo.com shows:

Watch a video of the demo here on Youtube.

But videos don’t translate into the real, physical world, yet.

LENR bad-boy Andrea Rossi, inventor of the EcatSK, draws ire from working scientists in the CMNS field for his theatrics and demonstrations that have yet to be confirmed by the community-at-large. He does not attend conferences or meetings, does not publish in JCMNS, and has little contact with active CMNS researchers. Documents from the very public trial with former partner Industrial Heat showed a decidedly uncooperative Leonardo Corporation working outside the bounds of normal business expectation.

Listen to the Cold Fusion Now! podcast episodes with Abd ul-Rahmann Lomax, who documented the trial, and Mats Lewan, who authored An Impossible Invention, a book that follows the development of Andrea Rossi’s Ecat.

But if LENR had a Human Resources center, they would be hard-pressed to find anything that resembled a mainstream scientific organization. The people who would tread into the pariah science of cold fusion, conduct advanced nuclear research in basement labs at their own expense, banned from publishing any corroborated results, and derided by their peers adorned with money and fame – are by self-selection uniquely fashioned individuals, and that quality intensifies at the fringes of the fringe.

Andrea Rossi escaped the US with $10 million and moved his enterprise to Sweden, where the QuarkX and new EcatSK have been developed. The EcatSK reactive material based on nickel and light-hydrogen has had a long history of making big heat.

Precedence for excess heat from nickel-hydrogen systems

In August of 1989, University of Siena Professor of Physics Francesco Piantelli discovered the anomalous heat effect in Nickel-Hydrogen systems, and made exceptionally large output power in the process. His collaborations with Professors Sergio Focardi and Robert Habel began in 1990.

Mathieu Valat of MFMP (L) and Francesco Piantelli (R).

Seventeen years later, Andrea Rossi asked Dr. Focardi to evaluate his then-Energy Catalyzer, and got a positive review. The relationship continued through Sergio Focardi’s death in 2013.

Sergio Focardi portrait after October 6, 2011 demonstration of E-Cat.

Dismissed as a con man taking advantage of an elderly scientist, we believe this early LENR pioneer deserves more credit. Cold Fusion Now! accepts that Andrea Rossi can make a reaction happen, but has problems controlling the reaction to make a technology, just like everybody else in this field.

Mats Lewan, author of An Impossible Invention, a book on the development of the Ecat, writes on his blog, that the new device “uses only minute amounts of abundant elements such as hydrogen, nickel, lithium and aluminium”.

Has this fuel changed from previous mixtures?

Nickel is a catalyst for the fuel

In Analysis of New Rossi PCT filing based on US Patent 9,115,913 issued 25Aug15 patent lawyer David French writes:

Among the embodiments are those in which the fuel mixture includes lithium and lithium aluminum hydride, those in which the catalyst includes a group 10 element, such as nickel in powdered form, or in any combination thereof.

In other embodiments, the catalyst in powdered form, has been treated to enhance its porosity. For example, the catalyst can be nickel powder that has been treated to enhance porosity thereof. [In those embodiments that include an electrical resistor, the].The apparatus can also include an electrical energy source, such as a voltage source and/or current source in electrical communication with the [resistor.] heat source.

Among the other embodiments are those in which the fuel wafer includes a multi-layer structure having a layer of the fuel mixture in thermal communication with a layer containing the electrical resistor. heat source.

In yet other embodiments, the fuel wafer includes a central heating insert and a pair of fuel inserts disposed on either side of the heating insert.

Read full article Analysis of New Rossi PCT filing based on US Patent 9,115,913 issued 25Aug15 by David French for more on brackets.

Furthermore,

The powder in the fuel mixture consists largely of spherical particles having diameters in the nanometer to micrometer range, for example between 1 nanometer and 100 micrometers. Variations in the ratio of reactants and catalyst tend to govern reaction rate and are not critical. However, it has been found that a suitable mixture would include a starting mixture of 50% nickel, 20% lithium, and 30% LAH. Within this mixture, nickel acts as a catalyst for the reaction, and is not itself a reagent. While nickel is particularly useful because of its relative abundance, its function can also be carried out by other elements in column 10 of the periodic table, such as platinum or palladium.

Reproductions of the Rossi Ecat have been conducted world-wide, with mixed results. The successful fuel recipe with the combinations and concentrations of critical elements is still unknown.

“Any element that reacts with hydrogen appears to support LENR – titanium, nickel, zirconium have all been explored. The big challenge is to find out what it is about those hydrides that is unique and makes it possible to initiate a nuclear reaction.” says Dr. Edmund Storms, a nuclear chemist and LENR researcher. “Rossi found that nickel is important, but there’s a certain lack of understanding of what Rossi did.”

“Rossi identified nickel as being where the nuclear reaction was occurring. But that is actually not the material he was using initially; he was using a nickel catalyst. A nickel catalyst is not pure nickel. It’s nickel that has been applied to some inert substrate. That’s the way catalysts work.”

Edmund Storms spoke with Ruby on the Cold Fusion Now! podcast and gave a tutorial on catalysts.

“There’s an acting metal that can break the hydrogen bond, and then, there’s an inert substrate on which the hydrogen atom can diffuse, causing what’s called spillover hydrogen. It’s that spillover hydrogen that is active for the reaction, not the hydrogen in the nickel. So there’s reason to think the nickel is not where the action is.”

Historical example of catalytic fusion

An example is found in the work of Les Case, a chemical engineer with four degrees from MIT who discovered what he called catalytic fusion using palladium and deuterium systems. Case found that a catalyst made by depositing palladium – in finely divided form – on charcoal, could be made nuclear active.

Graphic: Les Case in 1998 from http://www.angelfire.com/scifi2/zpt/case.html

Ten years ago, Case wrote, “I discovered that using certain standard commercial catalysts, one could get this fusion to occur under reproducible, mild conditions. This is the catalyst that I’ve set upon as being about the most effective that I currently have available. This is a standard palladium on activated carbon catalyst. One-half percent by weight of palladium loaded on this activated carbon— this is the key. You change this just a little bit and it doesn’t work— at all! But if you stay within the approved ranges, it works basically all the time.” -Infinite Energy Magazine July 1999

This was the experiment eventually reproduced by a team at SRI International led by Dr. Michael McKubre that also correlated the excess heat with the nuclear product Helium-4.

“Now, people said, ok the reaction is happening on the finely divided palladium,” continues Storms. “but that’s not necessarily true. The reaction could also be happening in the charcoal.”

“The charcoal cracks a lot. Look at it on a scanning electron microscope and you can see the cracks. All the charcoal has to do is allow the hydrogen atoms being generated at the palladium to diffuse across the surface to find a crack where the nuclear reaction occurs.”

This hypothesis is supported by the fact that when the source of charcoal, made from a particular coconut collected from a South Pacific island, was no longer available, Case could not get the reaction to work ever again; no other charcoal would work in his device.

“We have to be very careful in imagining where this nuclear reaction actually occurs. Even in palladium, in the electrolytic experiments, it only occurs very near the surface. And the surface of the cathode is not pure palladium, it’s a very complex alloy, and it’s also complex metalgraphically, so there’s a lot of stuff going on there, that has no relationship whatsoever to how people imagine palladium to look.”

According to Edmund Storms, there is no reason to believe that the nuclear reaction was occurring in the palladium itself, and likewise, the same situation would apply to the nickel-hydrogen reactions.

If Andrea Rossi has found the right mix of elements to catalyze and control the reaction, only time will tell as we wait for confirmation.

Robert Godes on the Cold Fusion Now! podcast

Robert Godes, the President and Chief Technical Officer of Brillouin Energy, is the guest on the Cold Fusion Now! podcast and discusses the latest changes to their signature LENR reactor now in development as a commercial product, the Brillouin Hydrogen Hot Tube.

Listen to Robert Godes, Brillouin Energy on the Cold Fusion Now! Podcast page

Last June 2018 at ICCF-21, Dr. Francis Tanzella of SRI International reported on a year-long test of over thirty Brillouin HHT reactor cores with thermal power outputs of about 1.5x the initial electrical input, and producing under 10 Watts excess.

Watch video of Dr. Francis Tanzella’s ICCF-21 presentation Nanosecond Pulse Stimulation in the Ni-H2 System here.

Download the ICCF-21 presentation file here.

On-and-off control of the reaction has been routine for the Brillouin lab since its inception; they use a proprietary “Q-pulse” electrical stimulation to initiate and regulate the excess thermal power. But swapping out reactor cores and producing the same excess power results demonstrated that the year-long focus on quality materials manufacturing paid off.

Go to the Brillouin Energy website http://brillouinenergy.com/ to download the technical reports issued by SRI International.

By December 2018, a newly-designed Q-pulse board raised the thermal output to about 50 Watts reliable excess heat, all generated by a 2x COP.

“The highest power run then was 53 watts in and 109 Watts out,” wrote Godes. “A typical run looks like this”:

But just since this podcast was recorded, the HHT thermal power output has surged, more than doubling its December values and jumping to 100+ Watts – with more than 2x power output.

In the interview with Ruby, Robert Godes explains the Hydrogen Hot Tube marketing plans. Brillouin Energy Corp. has negotiated and sold licensing rights to several companies along the Pacific rim and there are negotiations with a mid-Eastern company for regional manufacturing rights.

All this may seem pre-mature; there are still engineering challenges ahead. However, with the LENR field advancing quickly, companies are accepting the risk and making the research investment now, fearing the higher costs after breakthrough.

The next phase of Hot Tube development is also open to a select public. One billion “Brillouin units” will available for purchase at a new company website http://bec.ltd/

From the website:

There is an opportunity for up to 299 US investors and up to 1,700 non-US investors to participate in this fund. Access to the fund will be on a first come, first served basis, beginning soon.

The minimum investment in this fund is 24,750 EUR. Register here to get on the waitlist and receive advanced notice when the units in the fund become for sale.

With the fund’s proceeds, BEC Ltd. will purchase from Brillouin Energy Corp. a dedicated class of preferred stock established in its charter, with the following terms.

Brillouin Energy Corp. will distribute 20% of its net profit to BEC Ltd. until the total distributed profit reaches five times the initial fund value, after which

Brillouin Energy Corp. will distribute 10% of its net profit to BEC Ltd. until the total distributed profit reaches ten times the initial fund value, after which

Brillouin Energy Corp. will distribute 5% of its net profit to BEC Ltd. in perpetuity

BEC Ltd. will distribute all revenues received from Brillouin Energy Corp. to unit holders equally on a per unit basis.

“I’m determined to bring the Hot Tube to market,” says Robert Godes. “We’ve got original equipment manufacturers (OEMs) that can design our reactor into highly energy-efficient products and de-carbonize this planet.”

The amount of hydrogen in an average glass of water contains enough energy density, when applied to Brillouin Energy’s unique boiler systems, to power 30,000 homes for a year.

Listen to Brillouin Energy’s President and Chief Technical Officer Robert Godes discuss, science, technology, and LENR theory on the twentieth episode Cold Fusion Now! podcast with Ruby Carat on our podcast page, or, subscribe in iTunes.


Cold Fusion Now! brings the voices of breakthrough energy scientists to the public and we need your financial support to continue. Go to our website at coldfusionnow.org/sponsors/ to be a Cold Fusion Now! SuSteamer or sign-up on Patreon.

Patreon is a platform for financially supporting people like us. You can pledge as little as a dollar per episode and cap your monthly spending. When we deliver, you reward the work!

Visit us on Patreon to sign-up and become a Patron!

 


Top