Sergei Tcvetkov on the Cold Fusion Now! podcast

Physicist and nuclear engineer Sergei Tcvetkov is the guest on the Cold Fusion Now! podcast along with Natalya Famina as translator.

Listen to Sergei Tcvetkov on the Cold Fusion Now! podcast our Podcast page.

Sergei Tcvetkov has been experimenting with unique LENR systems using titanium cathodes to generate nuclear products and excess heat since 1989. He and his team had been testing materials suitable for spaceflight when he heard the news.

Sergei Tcvetkov, physicist and nuclear engineer, developing a LENR-based titanium-deuterium reactor.

“First, we had very interesting circumstances at the time of Fleischmann and Pons’ press conference”, he says. “We were working on a flight to Mars. We created a hydrogen complex of high parameters, i.e. working directly with hydrogen. It was a large complex that was designed to test various space materials. The complex is a few material science machines that worked on the rupture of metals in a hydrogen gas medium. The material of the nozzles from which the heated hydrogen should fly-out at a temperature of 2000 degrees and a pressure of up to 400 atmospheres. (Nozzles – these are the devices through which the rocket is released from a rocket engine fuel.) And that’s why we had a lot of materials that we could use for our project on cold fusion. This allowed us to assemble the existing plant within three weeks. A photo of this installation is presented in the REGNUM report.”

Beloyarsk NPP in Zarechny, where Sergei Tcvetkov and colleagues began work on cold fusion reactor in April 1989.

“Secondly, in addition, by this time we were engaged in materials of biological protection of nuclear reactors based on titanium hydride. So we were able to saturate the titanium with hydrogen. I want to draw special attention to the fact that work with hydrogen is an explosive type of work, and we had already mastered the rules of safe work with hydrogen.”

“We had a lot of specialists at our research Institute who worked at the research reactor as we did. We had specialists in radiation dosimetry, specialists in calorimetry of irradiated materials, i.e., we had a very wide set of experts and devices. Even the absence of deuterium gas couldn’t stop us. We ordered it in Siberia and it was delivered to us in three weeks.”

“From the very beginning, we decided that in order to obtain cold fusion reactions inside metals, it is necessary to saturate this metal with deuterium as much as possible. Because we had titanium hydride, so we decided to use these samples that we had ready for biological protection. We heated them and removed the hydrogen from them by vacuum pumping. Then we prepared high-pressure deuterium and fed it to this pure titanium.”

“As a result, we were surrounded by neutron detectors, gamma detectors, measured neutrons, gamma radiation at the same time. Neutron detectors were based on Helium-3 gas-discharge. Plus, we used solid-state neutron detectors to measure neutrons – they were based mica-Muscovite.”

“The values then at the first installation were measured about 500 neutrons per second. Now, at this point in time, we measure about ten to the fifth power of neutrons per second. But it’s impulsive. These are short pulses of the order of 200-300 microseconds. It’s not constant radiation. This is not cyclic radiation – it is burst-like radiation.”


A research summary on the titanium-deuterium system is presented in Initiation of the Cold Fusion Reactions by Air Components published in ICCF-16 Proceedings JCMNS Vol. 8 (pgs. 23-28).


In his Regnum article, Tcvetkov described a reaction in his work where tritium and a proton combine to give Helium-4 along with a gamma and 19.814 MeV of energy. Ruby asked him to elaborate on how this is different than the palladium-deuterium systems, where two deuterium nuclei join to give Helium-4.

“These reactions are misunderstood. Talking about the reaction of tritium plus proton to helium-4 is in the sense that this reaction gives the maximum amount of energy per reaction between the isotopes of hydrogen. And we consider the d-d reaction when tritium plus proton is obtained. It gives four Mega Electron-Volts of energy. As a result, Helium-4 is not obtained. If you’ve read Fleischmann and Pons’ paper, you won’t see Helium-4 there as a result of their reactions.

“I believe that helium is formed here in the same way it does in McKubre’s work, due to the cascade of nuclear reactions, because the same tritium and protons are produced by the d-d reaction of very high energies. There are still reaction products such as Helium-3 and neutrons. They can interact with high probability and that these reactions will give the Helium-4 without high-energy gamma radiation.”

“And if we consider hydrogen and Nickel, then there is a slightly different mechanism: first, deuterium is formed from hydrogen. Then the deuterium by the reaction with the formation of tritium, Helium-3, neutrons, protons. This is my view on these processes.”

The first reactor for the production of cold fusion reactions on deuterated titanium, designed in the SF NIKIET in 1989. Graphic: Sergei Tcvetkov

Read the Regnum report “Cold nuclear fusion: we immediately went our own way” for more.


Sergei Tcvetkov’s early research focused mostly on measuring nuclear products and he did not look for transmutations. He says that, “all I had to do was register neutrons and excess heat. As a nuclear physicist, I understand that neutrons, which are formed as a result of these d-d reactions, they interact with the surrounding metal atoms, and from these reactions of neutrons and atoms of metals and impurities, we get the transmutation of other elements.”


Read Possibility of Using Cold Fusion for the Transmutation of Nuclear Waste Products [.pdf] by Sergei A. Tcvetkov.


In the 1990s, commercial efforts began to try to develop a technology based on the cold fusion reaction. One of those companies was ENECO, then headed by Frank Jager. Sergei Tcvetkov worked as an engineer with ENECO.

“They came to Yekaterinburg in 1993 with Oleg Finadeev and met with academician Alexei Nikolaevich Baraboshkin at the Institute of High-Temperature Electrochemistry in Yekaterinburg. They signed a contract to study how strontium cerates interact with deuterium. ENECO started paying for the work of this group. I was invited to this group as a research engineer. During the year we have achieved good results and detected neutrons; good enough with saturation of strontium cerates by deuterium. We also worked with molten salts by electrolysis with palladium cathode.”


Read Excess Heat in Molten Salts of (LiCl-KCl) + (LiD + LiF) at the Titanium Anode During Electrolysis [.pdf] by S.A. Tcvetkov, E.S. Filatov, and V.A. Khokhlov.


“These results have been reported at several international conferences in Hawaii (ICCF-4) and in Monte Carlo (ICCF-5). Then, together with ENECO, we applied for a patent on the source of neutrons in the interaction of deuterium with strontium cerates. This application is in my report. But in May 1995, we had to terminate this contract, because there was a prospect that our Russian Academy of Sciences would finance a large project on cold fusion. However, at the end of May academician Baraboshkin died unexpectedly. And we were left without a contract with ENECO and without a project with the Academy of Sciences. So, that’s how we ended our collaboration with ENECO. Yes, it was another project on cold fusion in Russia that failed to start. After that, we did not have a single project that would be financed from the Russian budget.”


ICCF-4 Proceedings EPRI Part 3 [.pdf] (pgs 5-1 through 5-7)

ICCF-5 Proceedings Part 2 [.pdf] (pgs. 201-208 and 227-232)


By 2012, Tcvetkov was working in Nuremberg, Germany and was able to attend the September conference in Zurich that year organized by Andrea Rossi.

“At this conference I met our Russian student Irina Uzikova, whom Andrea Rossi invited to his first demonstration of the MegaWatt device in October 2011. She introduced me to Andrea Rossi. I then gave him congratulations for raising the interest for the cold fusion in the public, with his works and demonstrations. I took his autograph, as you can see in the photo in the report.”

Asked if he believes Rossi can make big heat, Tcvetkov asserts, “I’m sure of it, just as I’m sure of the excess heat I get.”

While nuclear products have been the focus of many of Tcvetkov’s measurements, excess heat experiments in his Estonian lab generated several hundred Watts.

Ninth experimental setup cold fusion in Estonia 2018. Graphic: Sergei Tcvetkov

In the Estonian lab, “The first thing I did was repeat the technology of making my samples out of titanium, and increased the mass of these samples. Then I reproduced the experimental set-up and got results that were very good for excess heat – hundreds of watts, about 500 watts, which I managed to get for over four hours.”

The success of the titanium reactor prompted Sergei and his group to apply to for a patent.

“In 2012, when we had started work in Nuremberg, Germany, we issued and filed an application for a European patent: Method and device of nuclear fusion. After long corrections, additions, and work with this application, in 2014, it was published in the collection of applications of the European Patent Office.”

“It’s been a long trial. We received objections every year. The result of this examination is that we have not yet been granted a patent, and we continue our objections to this.”

“Once again, at the beginning of March, we submitted new changes to this patent and are currently waiting for the next examination. We hope now that since the US has adopted the classification of cold fusion reactors, maybe the European Patent Office will reconsider its attitude to our application and give us a patent. There’s been no response from them yet. They have six months to answer, so we’re waiting.”

He’s got so much data from the German and Estonian labs, there’s a lot of data analysis to do. But right now, he’s putting a project together to develop the titantium-deuterium reactor, and he needs investment.

“I am currently creating a Design Bureau for the development and manufacture of reactors based on the interaction of titanium and deuterium. To do this, I need a good investor. Last year I applied to the American organization ARPA-E, but unfortunately I did not get a positive result from them and they refused to finance me. The next such open competition they will have in two years.”

“As I said before with the death of academician Baraboshkin, all Russian state funding of these groups stopped. Those groups which continued to work, they worked with financing from abroad or at the expense of private financing. But private funding is weak and capricious: it begins quickly and ends quickly. Even in Estonia, the lab operated for four months and then funding ended. “

“So we’re in the same situation that Edmund Storms is in; we can only work on the pension that we earned in our previous career. But our pension does not compare with the American pension in any way! We have limited funds and that is why everything is being done slowly.”

But Sergei Tcvetkov continues to build the new titanium reactor.

“I see that this method of obtaining energy is promising, it is real and humanity needs it. Humanity needs to tame the energy of the Sun on Earth. This is cold fusion.”


Listen to Sergei Tcvetkov on the Cold Fusion Now! podcast our Podcast page.



Sveinn Ólafsson on the Cold Fusion Now! podcast

Dr. Sveinn Ólafsson is the guest on the Cold Fusion Now! podcast with Ruby Carat. Dr. Ólafsson works with a form of Rydberg matter called ultra-dense hydrogen which could be related to the cold fusion/LENR reaction.


Listen to the Cold Fusion Now! podcast with Dr. Sveinn Ólafsson on the Podcast page.


Dr. Ólafsson received his Ph.D. from Uppsala University and is currently a research professor at the School of Engineering and Natural Sciences at University of Iceland. He had a career in hydrogen storage before Andrea Rossi sparked his interest in cold fusion.

“In the evenings, I just started to read”, says Dr. Ólafsson, “and I googled, by chance, ‘dense hydrogen‘, and up came Leif Holmlid. ”

He describes how Dr. Leif Holmlid was researching Rydberg matter and discovered a new state of “ultra-dense hydrogen”.

“What was so intriguing was the short distance between two protons that he claimed. I started contact with him shortly after that, and that is the start of any experimental work I have done in this field.”

“He’s been the only guy doing this, except with a few graduate students initially, but he retired a few years ago. Since then, he has been alone, and after I contacted him, there was two of us then in the beginning, and then Sindre came later.”

Drs. Sveinn Olafsson (L) and Leif Holmlid (R). Photo from Experimental Techniques for Studying Rydberg Matter of Hydrogen by Sveinn Olafsson from the 2019 CF/LANR Colloquium at MIT

He uses a very common techniques which is time of flight spectroscopy, or sometimes time of flight mass spectroscopy. This is widely used in all kinds of chemistry experiments. “

“What is different here, is that Leif has a different production unit of ions – or sample – which he is studying. So he was initially just interested in the Rydberg states of atoms, and this whole time, he has been improving techniques to study that.”

“And by chance he noticed that the time of flight was too short, actually, so that started the ultra-dense hydrogen.”

In time of flight, he is referring to is the time it takes a particle from the sample region to be ejected and travel down a tube to a detector some distance away after being stimulated by a laser. Dr. Ólafsson explains the process.

“What the laser is doing, since it has wavelength of say 1 micron, it’s actually letting zillions of electrons and protons to oscillate. So it’s joggling something there, and these millions of particles somehow react and something flies out.”

Time of Flight Set-up. Slide from Experimental Techniques for Studying Rydberg Matter of Hydrogen by Sveinn Olafsson from the 2019 CF/LANR Colloquium at MIT.

“The time-of flight is measured initially in the normal state of hydrogen Rydberg matter. When the laser breaks up these clusters, the individual atoms travel apart because of the positive charges. Some times of flight are so short, that the energy, or the closeness of these two entities, is so close, they would have to be 2.3 picometers apart initially – that is the ultra-dense state.”

“But also at the same time, you can see they were close at normal chemical distances also. So you can see both the normal state and the dense state using the same instrument. What is different is that in one case you’re having time of flight in microseconds, and the next you have time of flight in nanoseconds, or that range.”

“Time of flight is a technique used in normal chemistry all the time. You hit it with a laser and these chemical entities fly apart, usually just 5 eV, and that’s it. ”

“Leif is using the energy of 630 eV, which is quite high, and no chemist or physicist will accept that you have such bonding distance, or bonding energy, in any molecule, or any states, because quantum physics says that state is unbound and not stable.”

Leif Holmlid was using higher laser energy stimulation to perform a common experiment, and it turns out that his choice of sample catalyst may have led to the surprising outcome of an ultra-dense state for hydrogen.

Dr. Ólafsson says, “Before that, he had been studying different easy metals like potassium which is easy to study and easy to produce Rydberg states, and I think by chance, he used catalysts that could do similar things to hydrogen as to potassium.”

“Hydrogen has a very high ionization energy compared to potassium and all these alkali metals, so it is very strange that you could make a a Rydberg state of hydrogen just by catalysts.”

“Leif started first with a common catalyst, the one making all this plastic waste that you find in nature now. This catalyst is one the steps of making polyethylene plastics.”

“So there are tens of millions of tons of this catalyst made every years, just to make plastics. But if you put some styrene in, then you’re changing some atoms on that molecule. That catalyst is usually a very hollow material, or nano-porous, so you basically have a huge surface area in the catalyst, which just makes the production better.”

Graphic of Rydberg formation. Slide from Experimental Techniques for Studying Rydberg Matter of Hydrogen by Sveinn Olafsson from the 2019 CF/LANR Colloquium at MIT.

“Basically this is a nano-porous surface, and what is probably going on is that hydrogen is adsorbed on that surface, and we’ve been discussing that this is just a special surface where you can prime the hydrogen to have a Rydgberg state as the lowest energy due to the potassium ions which are on the surface also.”

“This is a mixture of ironoxide – rust – and potassium, and it’s well known that when you put oxide surfaces with potassium, the three electrons from potassium forms a kind of electro-gas on top of the surface. “

“So this has never been studied or calculated because it’s very complicated to do it since the orbit of the Rydberg state is huge. It would make the Rydberg atom in a Rydberg state, which has a circular orbit with high quantum numbers – if it is an atom.”

“You can not do that easily to hydrogen, but on the surface, you could make a joint cooperation between the surface and the hydrogen. These may join up on the surface and give us the first states of this process, which is just the normal hydrogen Rydberg matter which is the feeding matter for the ultra-dense state.”

“You have this feedstock which is the normal hydrogen Rydberg matter, and through some excitation, it’s actually more thermodynamically stable to go into the other phase, but not so greatly, so that can obviously form some thin layers on top of metals, and that has been seen in experiments of ultra-dense state, which has so many forms creeping on the surface, and can even live for days if you leave it in the chamber there.”

“It’s actually fairly easy to prove this is true between two protons in a course of quantum physics, and I totally agree on that viewpoint.”

“But nobody knows what you can say if you are trying to do this with, say 15 or 19 particles, because that theory is not so easily solved. It’s not so easy either to say that it is not possible.”

“Most people use the simple way out and say it’s impossible and nonsense, because they are using so simple a model; they are not using multi-particle physics.”

For the ultra-dense state of hydrogen, Dr. Ólafsson says that “it’s always in that range of 2.3 pm. Leif reports that sometimes it’s a little bit less, and sometimes higher. He has given indication that this material has different spin states.”

“The only problem with is that the theory describing it is an empirical model, so it has no support from quantum calculations. It is describing his results, so we can say there are excited states which are a little bit longer distances and so on.”

“Since Leif Holmlid is the only man who has been doing this, we are replicating some parts of his work, but so far, we have not been studying the 2.3 picometer much. We’ve only been studying the ultra-fast breakup, when we have a higher time of flight. It’s not actually a bound state, but it’s actually flying out with much higher energy.”

Slide from Experimental Techniques for Studying Rydberg matter of Hydrogen by Sveinn Olafsson from the 2019 CF/LANR Colloquium at MIT

“At the moment we are just trying to catch up with Leif. We have put the labs together, and we are trying to replicate some of his work, because according to him, we are the first experimentalists who have contacted him and tried to replicate things.”

“It’s actually a nice story to tell that I had applied for some money from the Icelandic Research Council here, and the main argument from all the reviewers was that “nothing has been published except him, and, if this were to be true it would possibly be quoted in the highest scientific journals’. So actually it was a catch-22; they believe all these claims are so wonderful, that somebody must have already studied it, but nobody has! It’s not good to be #2 in applying.”

“I managed to get funding, it was from a Technological Development fund. They are less bound to what science is and is not.”

Asked if he thought that ultra-dense hydrogen could be behind the cold fusion reaction, Dr. Ólafsson said that was his original thought when he saw Leif’s research.

“I thought, this is so close, this must be cold fusion. But it is so complicated a behavior, and of course, getting experiments in cold fusion and experiments in Leif’s research, to join up is of course difficult because they’re in different surroundings.”

“When I contacted Leif and asked him if he thought this was possibly behind cold fusion, he was skeptical, and didn’t want to be linked to the cold fusion thing.”

“But I managed to make a simple calculation with this distance of 2.3 picometer and some simple assumption, and it gave me that the rate of this distance could be enough. But it has one problem, because if you have this tunneling mechanism at this distance, like muon-catalyzed fusion, then you should still see the same result. In other words, you should get radioactive neutrons and protons. So these particles trying to tunnel in close to each other, that is not the right physics [for cold fusion].”

“But Rydberg matter and ultra-dense physics gives us the opportunity to study multi-particle interactions. In a sense, it tells us, if there is a link (between LENR and ultra-dense hydrogen), then it’s a multi-particle tunneling or interaction which could be making cold fusion signals.”

“I don’t know any samples without a crack or opening. Foil has cracks and so on, so you don’t know. I think there is nothing denying that ultra-dense hydrogen is in all cold fusion experiments.”

After being schooled in ultra-dense hydrogen production, Ruby asked Dr. Ólafsson how it was working with graduate student Sindre Zeiner-Gundersen in Norway, who received the test reactor from Tadahiko Mizuno last year.

“Well Sindre is not quite so young a student, he’s in his 30s, so that makes the game easier, you could say! Sometimes, he’s the student, and sometimes, I’m the student.”

“Since we are building one lab in Norway, and one lab in Iceland, which is a little bit different lab, he’ll makes something in his lab, and I catch up with that, and I do the same here, vice versa. ”

“And then we are traveling to each other’s lab, and I’ve been here three years already, and a PhD should be over in three years, but we have the problem of wanting to see more, and do more. So we are always joking ‘when will he finish his PhD?’!”

“It’s a nice thing when you have started in a different field, and one day you kind of get bored, when you start doing the same thing over and over again.”

“So the main reason for me to join this field was out of curiosity, and to see what could be done differently from these nickel and palladium-type experiments.”

“And I think along this way, from 2011 to 2019, you read so many different fields, that you are suddenly becoming not an expert, you know something of everything in the end, and that has been the most enjoyable part of this project.”

“But I’ve still been doing a bit of what I’ve always done. Like I have projects at CERN with a large international group, where we meet up once a year and do a well known technique. It’s not cold fusion, but it’s nice.”

“And there’s another project here which I take part in where we try to find catalysts for ammonia production, so it’s a little bit of everything.”

Dr. Ólafsson’s colleagues have followed the journey. He says, “At the moment they’re so used to it – seven years later! They just smile, yeah, yeah, yeah…”

“I gave a talk last week at the Icelandic Physical Society about what is going on in this field here. And my closing words were, ‘If you’re confused, you’re not alone, I’m also confused as you’.”

“I was just presenting experimental facts, and strange ones. ”

“I think scientists are much more open – until they have read the applications – and then they get scared!”

Listen to the Cold Fusion Now! podcast with Dr. Sveinn Ólafsson on the Podcast page.

See Experimental Techniques for Studying Rydberg Matter of Hydrogen by Sveinn Ólafsson from the 2019 LANR/CF Colloquium at MIT.

ICCF-22 this September in Italy

The 22nd International Conference on Condensed Matter Nuclear Science ICCF-22 convenes September 8-13, 2019 in Assisi, Italy, celebrating thirty-years since Drs. Martin Fleischmann and Stanley Pons founded the discipline.

Registration is now open for five-days of CMNS experimental and theoretical reports, workshops, and panel discussions. The registration fee includes meals and accommodation at the Hotel and Conference Centre Domus Pacis. There is an early-bird €100 discount for the first 40 registrants before May 31. The price is then €800 per person.

Abstracts are being accepted through July 31. Parameters for submission are (from the website):

Experimental papers that report nuclear events will be given precedence including transmutations and radiation.

Correlation of excess heat with consumption of fuels, production of ash, generation of nuclear signals, consistency with theoretical models, are also welcomed.

In addition the conference invites papers on instrumentation, applications, relevant materials.

Theoretical papers must include a clear description of the model under discussion as well as what experimental result(s) the model is intended to address, and what novel predictions are made.  In particular, the model should discuss how radiation is or is not expected. The goal of a theoretical paper should be to make progress on the evaluation of a model, to understand its strengths and weaknesses as it applies to observable phenomena. It should suggest the way forward for future experiment and verification.

In June 2018, ICCF-21 presented a stunning procession of reports on bigger heat results from multiple labs around the globe, and new hybrid fusion-fission reactors in development by NASA. A special effort was made to present a wide variety of the top theoretical models that seek to explain this Rumpelstiltskin Reaction. Cold Fusion Now! was there capturing photos and audio.

This past year, labs have continued the march on increased power, and we expect these advances will be reported on at ICCF-22. For the many models of this reaction, we hope panel discussions will focus on synthesis, and bring a common vocabulary to theoreticians, that links theory with the experimental facts.

Cold Fusion Now! will be reporting from the conference and capturing video for a documentary film to begin production in 2020.

Ruby Carat will also present to the community yet another Amazing Special Project seeking to create the narrative for a new generation about the heroic effort to bring cold fusion to the world, produced in honor of Drs. Martin Fleischmann and Stanley Pons for the courage they demonstrated 30-years ago.   Stay Tuned for more!

Conference updates will be available on the ICCF-22 website at http://iscmns.org/iccf22/.

Dimiter Alexandrov on the Cold Fusion Now! podcast

Listen to episode #23 of the Cold Fusion Now! podcast with Ruby Carat and Special Guest Dr. Dimiter Alexandrov, a Professor of Electrical Engineering and Head of the Semiconductor Research Center at Lakehead University in Thunder Bay , Canada.

He talks with Ruby about his transition to LENR research.

Go to the Cold Fusion Now! podcast page to listen to Dr. Dimiter Alexandrov.

“It was exactly 30 years ago when I read about the first cold fusion experiments. My current involvement in the LENR research is based on experimental research outcomes got accidentally two years ago,” says Dr. Alexandrov.

His materials and electronics research led him to investigate deuterium and hydrogen plasma for the purpose of manufacturing semiconductors.

“The palladium specimen was placed on the sample holder and deuterium nitrogen gas mixture was directed to the specimen in the environment of inflated hydrogen.”

Slide from Dimiter Alexandrov presentation at the LANR/CF Colloquium at MIT March 23, 2019.

“During the experiments, I found the release of helium, especially the lighter stable isotope helium-3, and another stable isotope helium-4. I also found there is a correlation between the heat release and the release of helium.”

“For me, it was apparent that I was observing low energy nuclear reaction. I would like to determine if it was cold nuclear fusion because, in fact, the initial products were deuterium, and hydrogen – hydrogen was actually coming from the environment – and their interactions with the metals. Generally speaking the end products were helium. There is no other way other than to conclude that cold fusion has occurred.”

Two different methods to determine helium production at the sample were used.

“One way was mass spectroscopy. It was clear we had a release of helium-3. However, mass spectroscopy cannot distinguish helium-4 from molecular deuterium.”

Semiconductor Research Center laboratory equipment from Dimiter Alexandrov’s presentation at 2019 LANR/CF Colloquium at MIT.

“That’s why additional experiments were done, and I was lucky I found there was a release of helium-hydride, that is helium-4-hydride, and, the mass spectroscopy showed clearly that helium-hydride had been released”, explains Dr. Alexandrov.

Helium-hydride is a positively-charged ion, a helium atom bonded to a hydrogen atom, with one electron removed. He reasons that the helium-hydride could not occur unless helium was produced in the main chamber.

“I did additional experiments in order to confirm we are talking exactly about helium gas, and these experiments were connected with optical spectroscopy of the excited gasses immediately above the sample holder. This optical spectroscopy shows very clear peaks about helium, which means we have optical radiation from the excited helium, and actually, it shows a typical peak for helium-4 and one peak pertaining to helium-3.”

He also finds a temperature change that cycles up and down, correlating with the cycles of helium-4 concentration. The temperature of the sample holder, begins at room temperature, but after interacting with the deuterium gasses in the hydrogen environment, the temperature increases about 3 degrees Centrigrade for approximately 15 minutes or so, and then drops back down to initial temperature, and then increasing again, etc.

Sample temperature (Red) and Helium-3 (Blue) concentration in the sample main chamber.

“I observed several cycles, and several times this happened, and the cycles of the temperature change correlate with the cycles of concentration of helium-3 in the main chamber. The heat release happens because of the creation of helium-3, and helium-4 as well”, he says.

Dr. Alexandrov recently presented at the 2019 LANR/CF Colloquium at MIT with Synthesis of Helium Isotopes in Interaction of Deuterium Nuclei with Metals [.pdf]

What’s next for this repeatable experimental effect?

Go to the podcast page to listen to Dr. Dimiter Alexandrov discuss his LENR research with Ruby Carat on the Cold Fusion Now! podcast.


The 22nd International Conference on Condensed Matter Nuclear Science ICCF-22 in Assisi, Italy on September 8-13, 2019.

Stephen Bannister on the Cold Fusion Now! podcast

Episode 22 of the Cold Fusion Now! podcast features Dr. Stephen C. Bannister, an Economist at University of Utah Salt Lake City. Dr. Bannister received his undergraduate degree from the University of Illinois, Champaign and then spent a career in high technology, becoming Director of Novell in Provo, Utah.

He then returned for a PhD in Economics at University of Utah where most of his research centers around energy and economic activity and is strongly connected to climate change.

Listen to Dr. Stephen Bannister on the Cold Fusion Now! podcast with Ruby Carat on the podcast page here.

Approaching the 30th anniversary of the announcement of cold fusion by Drs. Martin Fleischmann and Stanley Pons on March 23, 1989, Ruby asked Dr. Bannister if there was any activity on the campus to commemorate the event.

“If you go to the chemistry department and bring up this topic – which I have done – they come back and say “Oh no no no, that’s pathological science, and we don’t want to talk about it much”, says Dr. Bannister, “and I’m not sure that anyone in the physics department has much of an interest in [cold fusion] today. I don’t know that, but I’ve talked to some of the grad students in physics and there’s no awareness of it at that level. However, there is some interest in the Department of Earth Sciences.”

Dr. Bannister learned that a former post-doc at Los Alamos National Lab, who had prepared a report on the LENR work of Dr. Edmund Storms, had subsequently become Dean at the College of Earth Sciences at University of Utah. He and Dr. Bannister are “now in communication thinking about how to begin to advance the rehabilitation of the reputations of Drs. Fleischmann and Pons, and do some other things, although its not very formal yet.”

The National Cold Fusion Institute, funded right after the 1989 announcement, has an archive housed in the UU Library, offering another chance to bring more material to light.

Listen to Dr. Stephen C. Bannister discuss the relationship between energy inputs and economic output, and how breakthrough energy fits in, on the Cold Fusion Now! podcast with Ruby Carat on our podcast page here.


The LANR/CF Colloquium happens this weekend!

Go to http://theworld.com/~mica/2019colloq.html to register now!

Yasuhiro Iwamura on the Cold Fusion Now! podcast

Dr. Yasuhiro Iwamura is the guest on the Cold Fusion Now! podcast with Ruby Carat. Dr. Iwamura is a Research Professor in the Condensed Matter Nuclear Science division at the Research Center for Electron

Photon Science at Tohoku University. He has been dividing his time there between engineering a second Metal Hydrogen Energy generator with Clean Planet Inc. , as well as continuing his signature transmutation work with Mitsubishi.

Listen to Yasuhiro Iwamura on the Cold Fusion Now! podcast with Ruby Carat here on our Podcast page.

After graduating from the University of Tokyo in 1990 with a degree in Nuclear Engineering, he received a research scientist position with Mitsubishi Heavy Industries. “After graduate school, I entered fundamental research laboratory of Mitsubishi Heavy Industries. At that time, Japan had a good economy, and fundamental research was very active,” says Dr. Iwamura.

“I had been interested in cold fusion and seeking a chance to propose a research theme related to cold fusion. Fortunately, ICCF-3 was held at Nagoya in Japan in October 1992, and I attended it. I talked with many researchers at the conference and I was convinced that cold fusion was real. So I proposed a research plan to my laboratory and it was approved.”

“At the beginning of my research, we mainly did gas-loading and electrolysis type experiments, and finally we reached the permeation in this transmutation method.”

Nuclear transmutation work is replicated

The nuclear transmutations method developed by Dr. Iwamura and his team at Mitsubishi uses a host material described as a “nano-structured thin-film composed of palladium and calcium oxide and palladium substrate, with a target element” then planted between the layers.

A typical target element of Cesium is then transmuted to Praseodymium. Barium has been transmuted into samarium and tungsten into platinum.

Dr. Iwamura cannot explain the mechanism of the reaction behind these results, but he does reveal an experimental fact that should give theorists a clue in trying to construct a model of the reaction.

“We observe 2 or 4 or 6 deuterons make fusion for the target materials. The exact mechanism for the transmutation is not clear, of course, but I speculate that two deuterons are related to helium.”

“A helium atom consists of two protons and two neutrons, and two deuterons consists of two protons and two neutrons. So I suspect that this kind of mechanism exists in this type of transmutation reaction.”

Dr. Iwamura believes that a “very small amount of foreign element like impurity plays a very important role to induce condensed matter nuclear reactions”, too.

In the podcast, he gives an example. “In the case of our type of transmutation reactions, if we put calcium oxide onto the palladium thin-film, near the surface area, transmutation reactions occur, but if we use palladium only, we cannot observe a transmutation reaction.”

“It’s just a speculation, but I speculate that the interface between the foreign element, like calcium oxide, and the main element like the palladium, at the near surface plays a very important role. The mechanism is not so clear, but I suspect this kind of mechanics is behind condensed matter nuclear reactions.”

Transmutation work provides method for radioactive waste cleanup

Yasuhiro Iwamura continues the Mitsubishi transmutation work at Tohoku with support from both Mitsubishi and Clean Planet, Inc. Clean Planet CEO Hideki Yoshino has organized several collaborative efforts with academia and industry in Japan with the hopes of engineering an ultra-clean energy technology, and, ridding the globe of the tons radioactive waste by transmuting it to benign materials.

Dr. Iwamura says, “So even though I’ve moved to Tohoku University from Mitsubishi Heavy industries, I continue to make transmutation experiments using radioactive isotope Cesium-133 at Tohoku University.”

“If this type of transmutation reaction can be applied to radioactive isotopes, it will be possible to get rid of the radioactivity of nuclear waste. The transmutation of a radioactive element is beneficial to society, because many nuclear reactors are working all over the world and generate toxic radioactive waste, and getting rid of toxic radioactivity from Fukushima area in Japan is also beneficial to our society.”

This transmutation work was replicated by other institutes such as Toyota R&D, and is still in its early research stages, but the effort, along with the MHE excess heat project, will benefit greatly from the recent shares of Clean Planet bought by the Mitsubishi Estate Company.

“The stronger financial base of Clean Planet is beneficial to my Tohoku team and to make wider choices towards commercialization”, says Iwamura. “So of course it’s very good, and we’re very grateful to the Mitsubishi Estate companies.”

Of course the commercialization effort includes MHE generator, too.

MHE energy profiles replicated with same samples

“My colleague Ito and I did not have much experience with excess heat experiments before we moved to Tohoku University, because our work at Mitsubishi Heavy Industry was only transmutations. So it was a good chance to learn excess heat generation experiments using the MHE apparatus funded by the Japanese government organization NEDO, the New Energy Development Organization.”

The original MHE generator is located at Kobe University, and is the work of Dr. Akito Takahashi, Dr. Akira Kitamura, as well as a team of scientists and graduate students.


Read our interview with Dr. Akito Takahashi on the Cold Fusion Now! blog here.


A second Metal Hydrogen Energy device at Tohoku Univeristy designed to replicate results of the first MHE generator located at Kobe University. Graphic: Yasuhiro Iwamura ICCF21 presentation file

“The objective of our collaborative research is to clarify the existence of the anomalous heat generative phenomenon and to confirm reproducibility of the phenomenon. For the purpose, we did not change the design of the experimental apparatus intentionally. So, the second Metal Hydrogen Energy device located at Tohoku University is nearly equal to the first apparatus at Kobe University.”

“Of course we have some different points, for example our experimental apparatus is equipped with a larger number of measurement points, and some couples in our apparatus are slightly different to the first one, but basically, we did not change the design of the experimental apparatus intentionally to show the reproducibility of this phenomenon.”

Dr. Iwamura presented the latest second MHE generator results at ICCF-21 conference reporting excess heat results that were replicated by other labs using the same samples.


Watch Dr. Yasuhiro Iwamura’s presentation at ICCF-21 here on the ICCF-21 Youtube channel. Follow the link to download the presentation file in .pdf.


“Anomalous excess heat generations were observed for all the active samples at elevated temperature, about 150C-350C degrees Centigrade, and the amount of anomalous heat generation per hydrogen atom ranges from 10 eV per hydrogen to 100 eV per hydrogen or deuterium, which could not be explained by any known chemical process.”

Excess heat results for one sample run on the second MHE generator. Graphic: Yasuhiro Iwamura ICCF21 presentation file.

Also, there were “coincident burst-like increased pressure -and gas temperature- events of the reaction chamber, which suggested sudden energy release in the reaction chamber.”

“These results were observed for all experiments using the copper-nickel-zirconium material with H2 gas. Also, very large local bursts of energy release were obtained as evidenced by the broken zirconia beads used as a medium for the nano-particles.”

“Excess heat experiments using the same material at Kobe and Tohoku Universities showed similar experimental results, and the qualitative reproducibility between Kobe and Tohoku was very good.”

Close communication is key to successful replication

The success of the Japanese LENR research program is unmatched by any other country on the globe, and while support for LENR is not universal within governmental organizations, the continued positive gains provided by the researchers there has made it easier for mainstream organizations to lend a helping hand in a country with big energy needs.

In the cross-disciplinary field of condensed matter nuclear science, collaborative research requires the coordination of scientists from different fields, and Dr. Iwamura feels that “good and frequent communication between Japanese groups is the key” to successful replications.

“For example, I know Professor Takahashi and Professor Kitamura very well, and I ask them frequently about experimental device and method in detail. And during the NEDO project, our research groups often held meetings, and exchanged detailed information. So communication is the key, I think.”


Listen to Yasuhiro Iwamura on the Cold Fusion Now! podcast with Ruby Carat here on our Podcast page.


Patreon is a platform for supporting Creators like Cold Fusion Now!. You can pledge as little as a dollar per episode and cap your monthly spending to a limit you set. We are a totally self-funded LENR advocacy group that can only operate with your support.

When we deliver, you reward the work!

Visit us on Patreon to sign-up and become a Patron!

Atomic Love and THANKS to our new and continuing supporters. We are making it happen for a breakthrough energy future because of You. THANK YOU to the US, Great Britain, and Italy for your recent contributions.

If you haven’t subscribed yet, go to our website at coldfusionnow.org/sponsors/ to be a Cold Fusion Now! SuSteamer or sign-up on Patreon.

The Cold Fusion Now! Collective will be attending the LANR/CF Colloquium on the 30th Anniversary of the announcement of cold fusion! We’ll be collecting video for our documentary on the field – hope to see you there