DISCOVER COLD FUSION

SCRIPT by RUBY CARAT
www.discovercoldfusion.com

ART by MATT HOWARTH
(utilizing on pages 18 & 24 & cover
textures by Brenda Barrows)
www.matthowarth.com

Entire contents © 2020 Robin Carter

Published by Curtis Press
www.curtis-press.com

THIS SAMPLER IS BEING CIRCULATED
TO PROMOTE THE GRAPHIC NOVEL.

TO ORDER THE COMPLETE GRAPHIC NOVEL
GO TO:
WWW.CURTIS-PRESS.COM
Martin Fleischmann was born March 29, 1927, in Carlsbad, Czechoslovakia. He was arrested by the Nazis at age 11. Later, his family fled to Great Britain.

A Fellow of the Royal Society, Martin became widely respected as one of the top electro-chemists in the world, with a reputation for concise and mathematical arguments.

Stanley Pons was born in 1943 in Valdese, North Carolina. As a youth, he played football and experimented with chemistry sets.

In 1975, he went to University of Southampton in England, where Dr. Fleischmann was Head of Electro-chemistry.

They became close friends. When Dr. Pons became the Chairman of Chemistry at University of Utah in 1985, Martin visited often to share the natural beauty of Millcreek Canyon outside Salt Lake City.

Stan, did you know that in 1947 Alfred Cohn showed that hydrogen moves through a palladium metal wire as a bare proton?

This means it must move independently within the metallic lattice rigorously quantized by Brownian motion.

Do you think we could squeeze hydrogen into palladium enough to fuse the protons together?

Well, palladium can absorb 900 times its volume in hydrogen, and loading it electrochemically can create a billion billion billion atmospheres effect.

It's possible that we could make metallic hydrogen, too.

Let's try it.
While Martin cooked dinner, Stanley sat at the kitchen table, designing the experiment.

IT SEEMS IMPOSSIBLE, BUT WHY NOT TRY IT?

EXPERIMENTATION IS THE ONLY WAY TO FIND OUT.

APPLYING A CURRENT TO A SMALL PIECE OF PALLADIUM METAL SUBMERGED IN A SOLUTION OF HEAVY WATER WILL PRODUCE A NEGATIVE POTENTIAL AND ELECTROLYZE THE WATER, DRIVING THE DEUTERIUM ATOMS INTO THE METAL.

WE'LL PUT TEMPERATURE SENSORS IN SEVERAL LOCATIONS TO MEASURE THE TEMPERATURE. IF WE GET A REACTION, THE TEMPERATURE RISE WILL SHOW THAT.

ELECTROCHEMICAL CELL

- Thermistor connection
- Anode connection
- Cathode connection
- Gas outlet
- Heater connection
- Kel-F closure
- Water bath level
- Electrolyte level
- Silver mirror
- Vacuum jacket
- Short thermistor
- Capillary shields
- Metal film resistor heater
- Long thermistor
- Anode
- Cathode
- Kel-F support plug
They worked secretly in the basement lab of the Henry Eyring Chemistry Building at the University of Utah, using $100,000 of mostly Dr. Pons’ personal savings.

Conventional nuclear theory based on hot fusion in the sun says there should be a lot of deadly neutrons to get this amount of heat. We’ve generated some, but so few—they are difficult to even measure.

I can hardly believe it. We are getting more power out than the power we’re putting in.

Even if everything in the cell reacted chemically, that would not be close to the energy we are measuring coming out. It must be a nuclear reaction in the little piece of metal.

But it’s not the kind of nuclear reaction we are familiar with—there’s no deadly neutrons or gamma rays.

We’re still alive—so is Marvin Hawkins, our graduate student.

And it often takes months before a reaction starts—if it starts. We can’t seem to tell just when it’s going to react.

Yes, I’m still alive.

S. Pons, M. Fleischmann, C. Walling, and J. Simpson
International Patent Publication
No. 90/10935
(1990)

Once a current was applied, the temperature of the cell rose steadily, heating the water. Just over one month later, the temperature suddenly jumped 20 degrees—and increased exponentially toward boiling. Then just as suddenly, the temperature dropped back down, then continued to rise steadily. What made the temperature rise? What made the temperature drop? This was the question of the Anomalous Heat Effect.