

Warning!

- •Cold fusion, LENR, excess heat and related topics are controversial
- •Working in the field at present is dangerous to one's career
- Very powerful and energetic opposition
- Little or no governmental support in US
- Publishing is problematic, even now
- Research problems are very hard
- •One's professional and personal life can both be impacted

Outline

- •Introductory discussion of excess in in the F&P exp't
- •Correlation of excess heat and ⁴He
- ⁴He born essentially stationary
- Mechanisms and rates
- Conjecture about the reaction sites
- Loading requirements
- Early negative experimental results

Fleischmann-Pons experiment

Thinking about electrolysis

- •Fleischmann-Pons experiment is an electrolysis experiment
- Current flows between anode and cathode
- Water molecules are split
- •O₂ gas produced at anode
- •Pd can be loaded with D by electrolysis
- •D initially goes into Pd metal
- •After Pd loaded then D₂ gas generated

Crystalline Pd lattice

D₂O and Pd

Cathode loading

Loading of Pd in D₂ gas at 300 K

Take away message

- •Fleischmann-Pons experiment loads deuterium into Pd
- •High D/Pd loading is needed to see excess heat
- Increasingly more difficult to load deuterium into Pd at high loading
- •Wondering why high loading might be needed...

Observation of a heat burst

Excess power

Integrated energy

Thinking about the energy

$$\frac{630 \text{ kJ}}{60 \text{ hr}} = 2.9 \text{ Watts}$$

We would only get 1.2 kJ from detonating an equivalent volume (0.157 cc) as the Pd cathode of TNT

Excess heat effect

- Excess heat reported by Fleischmann and Pons
- Excess heat only after about a month of loading
- •Effect was big, 20x power gain in 1990 paper
- Large total amount of energy, 630 kJ in 1990 paper
- •No commensurate chemical products seen
- •Fleischmann conjectured nuclear origin for the energy produced
- •Subsequently many (mostly unsuccessful) searches for product nuclei
- •Correlation between energy produced and ⁴He in gas phase first reported by Miles, Bush, Lagowski et al (1993)

Time-correlation of P_{xs} and ⁴He

D. Gozzi, F. Cellucci, P.L. Cignini, G. Gigli, M. Tomellini, E. Cisbani, S. Frullani, G.M. Urciuoli, *J. Electroanalyt. Chem.* **452** 254 (1998).

Excess energy per ⁴He

The mass difference between d+d and ⁴He is

$$2M_d c^2 - M_{4He} c^2 = 23.85 \text{ MeV}$$

Is this consistent with experiment?

Energy as a function of ⁴He from SRI replication of Case's experiment

M C H McKubre, "review of experimental measurements involving dd reactions," Short course presented at ICCF10 (2003)

Not quite 24 MeV/4He atom

- •A moderate number of experiments with excess heat and ⁴He
- •Hoping for 24 MeV/⁴He
- •Instead, less ⁴He seen in most experiments
- •Conjecture that some of the ⁴He stays in the cathode
- Need to scrub it out to get it all

M4: Excess Power Correlation at SRI [Closed, He-leak tight, Mass-Flow Calorimeter, Accuracy ±0.35%]

M C H McKubre, "review of experimental measurements involving dd reactions," Short course presented at ICCF10 (2003)

⁴He measurements

M C H McKubre, "review of experimental measurements involving dd reactions," Short course presented at ICCF10 (2003)

Consistent with 24 MeV/4He atom

- •Excess energy and ⁴He measured in SRI M4 experiment
- •About 2/3 of ⁴He seen in off-gas
- Consistent with other results
- •Effort made to scrub out residual ⁴He
- •Total ⁴He measured consistent with 24 MeV/⁴He
- •One experiment carried out at ENEA Frascati with similar result
- •(Absence of resources has not allowed further experiments so far)

Take away message

- •Excess energy measured as heat in F&P exp't
- •No commensurate chemical products
- 4He observed in amounts commensurate with energy produced
- •Consistent with mass energy different between d+d and ⁴He
- •In nuclear physics d+d usually gives p+t or n+3He
- 4 He + γ pathway is down by 10^{-7}
- •Excess heat effect inconsistent with (incoherent) d+d fusion

Begin to think about reaction...

- •Experimental results consistent with some kind of mechanism that involves two deuterons and gives ⁴He and energy
- •But inconsistent with nuclear physics, since in accelerator exp'ts we see

$$d+d \rightarrow {}^{4}He+\gamma(24 \text{ MeV})$$

- •24 MeV gammas not present in amounts commensurate with energy (and so far not seen at all)
- •Must be some new kind of mechanism?
- •Where does the energy go?

Dawn of nuclear physics

E. Rutherford

Nuclear scattering like billiard balls on a pool table

Energy and momentum conservation

In nonrelativistic limit, can determine final state energies and momenta from conservation

$$(\mathbf{p}_{1} + \mathbf{p}_{2})_{f} = (\mathbf{p}_{1} + \mathbf{p}_{2})_{i}$$

$$(\frac{1}{2} m_{1} |\mathbf{v}_{1}|^{2} + \frac{1}{2} m_{1} |\mathbf{v}_{2}|^{2})_{f} = (\frac{1}{2} m_{1} |\mathbf{v}_{1}|^{2} + \frac{1}{2} m_{1} |\mathbf{v}_{2}|^{2})_{i} + Q$$

Energy and momentum conservation

Initial state:

Final state:

$$\frac{1}{2}M_1|\mathbf{v}_1|^2 = \left(\frac{M_2}{M_1 + M_2}\right)Q$$
$$= \frac{3}{4}Q$$

$$\frac{1}{2}M_2|\mathbf{v}_2|^2 = \left(\frac{M_1}{M_1 + M_2}\right)Q$$
$$= \frac{1}{4}Q$$

Can learn about the reaction if we knew ⁴He energy

A proposed reaction scheme:

$$d + d + X \rightarrow$$
⁴He + X + 24 MeV

$$\frac{1}{2}M_{4He}|\mathbf{v}_{4He}|^{2} = \left(\frac{M_{X}}{M_{4He}+M_{X}}\right)24 \text{ MeV}$$

Want to measure ⁴He energy

- •Silicon surface barrier detectors normally used for α spectroscopy
- Not so compatible with electrochemical cell
- Could use CR-39 emulsion detector
- •But would get α only if it left the cathode
- •Not an easy task to get at α

Propose using PdD as detector

Loaded cathode as detector

- •Think of PdD (or D₂O) as the detector
- •Fast alpha breaks up deuteron, makes neutrons
- •Less fast alpha can hit deuteron, causes secondary d+d reaction (which makes a neutron)
- •So, need to calculate neutron yields
- •And then look at experiment to see how many neutrons come out!

Range

Biggest yield at low energy from secondary neutrons

Very sensitive detector!

- •PdD turns out to be a very sensitive detector for fast alphas
- $\bullet \alpha$ range in the 10s of microns range and below
- •Reactions that generate neutrons for α energy below 10 keV
- Can detect neutrons outside of cell
- •Get similar numbers for D₂O

Turn to experiment

A. Takahashi, A. Mega, T. Takeuchi, H. Miyamaru, and T. Iida, *Proc. ICCF3* 79 (1993).

Result

- •Roughly 10 experiments where neutron detection working when excess heat seen
- •Neutron emission not correlated with P_{xs}
- •Five of these documented in enough detail to estimate upper limit on the source neutrons per joule
- •Get upper limit near 0.01 neutrons/Joule

Yield/energy for secondary neutrons

Examine d+d+X candidates

$$d + d + \text{Pd} \rightarrow {}^{4}\text{He}(23.0 \text{ MeV}) + \text{Pd}(0.85 \text{ MeV})$$

 $d + d + d \rightarrow {}^{4}\text{He}(7.95 \text{ MeV}) + d(15.9 \text{ MeV})$
 $d + d + e^{-} \rightarrow \text{He}(76 \text{ keV}) + e^{-}(23.77 \text{ MeV})$

We can rule out all Rutherford picture d+d+X reactions as inconsistent with experiment

Take away message

- •Goal was to learn something about reaction mechanism by determining $\boldsymbol{\alpha}$ energy
- •Propose to use PdD and D₂O as detectors
- •Less than 0.01 neutron/Joule in experiments
- •Conclude ⁴He born with less than 20 keV
- Consistent with no plausible Rutherford picture reaction
- ⁴He is born essentially stationary...wonder where the energy goes

What is nature up to?

 $d+d \rightarrow {}^{4}He + 24 MeV$

Nuclear degrees of freedom:

 $get \gamma$

Solid state degrees of freedom:

phonons? plasmons?

Letts 2-laser experiment

Figure 1. Schematic of the experimental set-up.

D. Letts, D. Cravens, and P.L. Hagelstein, *LENR Sourcebook* Volume 2, ACS: Washington DC. p. 81-93 (2009).

Excess power with 2 lasers

P. Hagelstein, D. Letts, and D. Cravens, J Cond. Mat. Nucl. Sci. 3 59, 77 (2010)

Sweet spots in the spectrum

Dispersion curve for PdD

Operation was predicted on compressional modes with zero group velocity

Dispersion curve for PdD with some H

Importance of 2 laser exp'ts

- •Interested in question of where the nuclear energy goes
- •In Letts 2-laser experiment, P_{xs} responds to beat frequency
- •...as if effect stimulated by optical phonons
- •By analogy with laser, might expect nuclear energy to go into optical phonons
- Excess power unchanged after two lasers turned off
- •Interpret experiment as providing indirect evidence that nuclear energy goes directly into optical phonon modes

Take away message

- •Experiments show ⁴He in amounts commensurate with energy
- ⁴He born essentially stationary
- •Indirect evidence from two laser experiment that nuclear energy goes into THz vibrations
- •(Not like any normal nuclear process)

Moving toward a model

- •Much effort working on theory... (too much to go into detail here)
- •Basic idea is that there is a "simple" mechanism capable of splitting a large quantum into many small ones
- •A theory has been worked out that describes this, using two-level systems, a highly-excited oscillator, and loss
- •Coupling between nuclear motion and internal nuclear degrees of freedom in relativistic model

$$\hat{H} = \sum_{j} \mathbf{M}_{j} c^{2} + \mathbf{a}_{j} \cdot c \hat{\mathbf{P}}_{j} + \sum_{k} \frac{\left|\hat{\mathbf{p}}_{k}\right|^{2}}{2m} + \sum_{j < j'} \frac{Z_{j} Z_{j'} e^{2}}{4\pi\varepsilon_{0} \left|\mathbf{R}_{j} - \mathbf{R}_{j'}\right|} + \sum_{k < k'} \frac{e^{2}}{4\pi\varepsilon_{0} \left|\mathbf{r}_{j} - \mathbf{r}_{j'}\right|} + \sum_{j,k} \frac{Z_{j} e^{2}}{4\pi\varepsilon_{0} \left|\mathbf{R}_{j} - \mathbf{r}_{k}\right|}$$

Current status...

- Governing fundamental Hamiltonian specified
- •Estimates for rates for fractionation of large quantum worked out
- •Coulomb tunneling factor comes in only once (instead of twice as in incoherent reactions), so no heroics needed in model to overcome barrier
- •Predicted rates for excess heat comparable to experiment right out of the box
- •F&P exp't involves down-conversion, but maybe should be able to see up-conversion of vibrations to produce nuclear excitation

What are lowest energy nuclear transitions?

Nucleus	Excited state energy (keV)	half-life	multipolarity
$^{201}\mathrm{Hg}$	1.5648	81 ns	M1+E2
$^{181}\mathrm{Ta}$	6.240	$6.05~\mu\mathrm{s}$	E1
$^{169}\mathrm{Tm}$	8.41017	$4.09~\mathrm{ns}$	M1+E2
$^{83}{ m Kr}$	9.4051	$154.4\;\mathrm{ns}$	M1+E2
$^{187}\mathrm{Os}$	9.75	$2.38~\mathrm{ns}$	M1(+E2)
$^{73}\mathrm{Ge}$	13.2845	$2.92~\mu \mathrm{s}$	E2
$^{57}\mathrm{Fe}$	14.4129	$98.3\;\mathrm{ns}$	M1+E2

P. L. Hagelstein, "Bird's eye view of phonon models for excess heat in the Fleischmann-Pons experiment," J. Cond. Mat. Nucl. Sci. 6 169 (2012)

Conceptual design

Karabut experiment (ICCF10)

Collimated x-rays near 1.5 keV seen with different metals (Al, V, Fe, Zn, Mo, Pd, W, others)

...and with different gasses (H_2 , D_2 , Kr, Xe)

Down-conversion, up-conversion

Direct:
$$\Delta n = \frac{\Delta E}{\hbar \omega_0} = \frac{24 \text{ MeV}}{33 \text{ meV}} = 10^9$$

With subdivision:
$$\Delta n = \frac{\Delta E}{\hbar \omega_0} = 10^7$$

Direct:
$$\frac{\Delta E}{\hbar \omega_0} = \frac{1565 \text{ eV}}{500 \text{ neV}} = 3 \times 10^9$$

Take away message

- Many theories proposed
- Conjecture that coherent processes are involved
- •Need to be able to down-convert large quantum for this to work
- •Model discovered in 2002 capable of coherent down-conversion and upconversion
- •Relativistic interaction Hamiltonian proposed for coupling between vibrations and internal nuclear degrees of freedom
- •Model able to describe excess heat effect and give reaction rates comparable to experiment
- •Want to develop collimated x-ray emission experiment to confirm/study

Looking for reaction sites

- •Experiment suggests new kind of coherent d+d reaction in F&P exp't
- •If so, still need sites for deuterons to react
- •Want to have them be close
- •But was argued in 1989 that deuterons don't get close in PdD

PdD lattice structure (fcc)

Background electron density due to Pd in PdD

P L Hagelstein, "Molecular D₂ near vacancies in PdD and related problems," *J. Cond. Mat. Nucl. Sci.* **13** 138 (2014)

H₂ in jellium

Electron density too high

- •Background electron density around 0.08 e/A³ at O-site
- •Expect occupation of $1\sigma_u$ (antibonding) orbitals
- Expect deuterium atoms to push apart
- •If so, then PdD would be expected to be inert for excess heat production
- Need environment with lower background electron density
- Focus on Pd monovacancy

PdD Host lattice vacancy

Background electron density

Low background electron density

- Low electron density around monovacancy
- •Expect around 0.03 e/A³
- •Lower than background electron density for PdD₂ molecule
- •For years thought we should look for molecular D₂ in monovacancies
- Recent calculations suggest more interesting situation
- •O-site and T-site occupation of monovacancy possible
- At high enough loading, can get O-site and T-site neighbors occupied

O-site, T-site occupation around a monovacancy

Nazarov et al, *Phys. Rev. B* **89** 144108 (2014)

P_{xs} versus D/Pd ratio

M C H McKubre et al, EPRI Report (1994)

Take away message

- •Electron density too high in PdD, so bulk PdD is inert
- Conjecture that monovacancies in PdD are active sites
- •Can load up to 14 deuterium atoms into a monovacany
- Can hold up to 8 without being close together
- •At high D/Pd loading above 0.83 conjecture begin to achieve more than 8 deuterium atoms/vacancy, and get close O-site and T-site D

How do we get monovacancies?

- •Cannot get deuterons close in PdD, electron density too high
- Need monovacancies to get lower electron density
- •But not many monovacancies present in Pd under normal conditions
- Vacancy creation energy in Pd near 1.6 eV
- •Vacancy creation energy reduced as loading increased, by more than 220 meV per neighboring D
- Monovacancies are favored thermodynamically at high loading

Vacancies in host lattice

Superabundant vacancy phase structure

Fukai and Okuma used this effect to make Pd_{0.75}H with large numbers of Pd vacancies, by heating PdH under high pressure

Y. Fukai and N. Okuma, *Phys. Rev. Lett.* **73** 1640 (1994).

C. Zhang and A. Alavi, J. Am. Chem. Soc. 127 9808 (2005).

Diffusion of vacancy cluster

Fukai et al, J. Alloys and Compounds 313 121 (2000)

$$D = D_0 e^{-\Delta E/k_B T}$$

$$D_0 = 3.8 \times 10^{-4} \text{ cm}^2/\text{sec}$$

$$\Delta E = 1.2 \text{ eV}$$

Characteristic distance diffused in 10⁶ seconds at room temperature:

$$L = \sqrt{D\tau} = 0.15 \text{ Angstrom}$$

Conclude that vacancy diffusion does not occur through this mechanism

What about near room temperature?

- •Monovacancies thermodynamically favored near room temperature above about D/Pd = 0.95
- Vacancy diffusion astronomically slow near room temperature
- •PdD_x at high loading wants to turn into vacancy phase lattice, but need millions of years to do so
- •But new Pd codeposited on surface at high surface loading can form vacancy phase structure
- •Motivates an interest in Letts variant of Szpak co-deposition experiment

Szpak codeposition exp't

PdCl₂ in electrolyte

S. Szpak, P. A. Mosier-Boss and J. J. Smith, J. Electroanalytical Chem. 309 273 (1991)

Excess power in Letts codep experiment

D. Letts and P. L. Hagelstein, J. Cond. Mat. Nucl. Sci. 6 44-55 (2012)

Take away message

- •Conjecture that monovacancies are active sites, since electron density is low
- •Monovacancies are thermodynamically favored at high D/Pd loading above D/Pd=0.95 near room temperature
- Szpak observed excess heat shortly after co-deposition
- •Letts co-deposition protocol co-deposits Pd at high surface loading, with prompt excess heat production
- Supports picture proposed for active sites

Maximum D/Pd ratio as predictor of success

M. C. H. McKubre *Proc. ICCF15* (2009).

Interpretation

- •Cathodes that loaded above D/Pd=0.95 showed excess heat at SRI, and at ENEA Frascati
- •Interpretation is that at high loading, inadvertent co-deposition of Pd occurs
- •Get thin layer of PdD with superabundant vacancies
- Monovacancies then serve as active sites
- •If high loading not achieved, or Pd not co-deposited, then not enough active sites

Early negative exp't results

- •Hundreds of exp'ts with negative results reported in 1989, 1990
- Argument made that excess heat effect not reproducible
- •Perhaps some of these experiments done when little was known about the experiment
- •Go back and look over the papers
- Try to understand what happened
- Aided by bibliography of Dieter Britz

Number of papers with negative experimental results

217 in all

Number with calorimetry, Pd and electrochemistry

39 in all

Thinking...

- Many different effects claimed by Fleischmann and Pons
- Lots of experiments looking for neutrons
- •In some cases argument was made that can determine energy produced by measuring neutrons
- •Remember that neutrons uncorrelated with energy, with an upper limit near 0.01 neutron/Joule
- •But 39 experiments with negative results still a big number
- •Wonder if the researchers knew they needed high loading...

Look at negative publications again...

39 negative

Require some mention of D/Pd loading

...with a D/Pd ratio of at least 0.83

7 left

...with a D/Pd ratio of at least 0.90

...would have been expected to work

Take away message

- Need to carry out something like F&P experiment to count...
- Need high loading to get excess heat
- Not all groups understood need for high loading
- Recall that it is hard to get high D/Pd ratio
- Only 1 of the early negative experiments is close to what was needed
- •(There are other requirements not discussed here)
- •The case for excess heat in the F&P experiment not being reproducible is overstated

Now compare with small number of positive excess heat results listed by Britz

39 negative49 positive

Take away message

- High D/Pd loading needed to see excess heat in F&P exp't
- •Conjecture requirement connection with development of monovacancy active sites from (inadvertent) Pd co-deposition at high surface loading
- •Requirement not understood (or believed) by all in 1989, 1990
- Only small number of early negative experiments in relevant regime
- Case for experiment not being reproducible is overstated

Conclusions

- •Excess heat effect in Fleischmann-Pons experiment looks real
- ...and reproducible
- 4He seen in amounts commensurate with energy produced
- •Impossible to account for through incoherent nuclear reactions
- Only plausible explanation involves coherent processes
- •Model developed based on down-conversion, relativistic interaction
- Active sites conjectured to be monovacancies
- Created through co-deposition with high surface loading
- Argument for lack of reproducibility was over-stated

Warning!

- •Cold fusion, LENR, excess heat and related topics are controversial
- •Working in the field at present is dangerous to one's career
- Very powerful and energetic opposition
- Little or no governmental support in US
- Publishing is problematic, even now
- Research problems are very hard
- •One's professional and personal life can both be impacted