


From Fukushima’ and beyond...

“The Beast that will not die’?
— The Economist

- .

“Are you still using fossil fuels, or have
you discovered crystallic fusion?
--Buzz Lightyear
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Energetic Particle Diagnostics

Solid State Nuclear Track Detectors
— Charged particles and neutrons
Cryogenically Cooled High Purity Germanium (HPGe)
—  X-rays, gamma rays and neutrons
Nal(TI)
— gamma rays
Bicron 412 Plastic Scintillator
— neutrons
Bicron 501A Liquid Scintillator
— neutrons
Bubble neutron Detectors
— neutrons
SHe
— neutrons

Silicon Barrier Detectors
— Alpha, betas, electrons

Proton recaoill
— neutrons
Witness Materials
— Neutrons
Liquid Scintillator
— Alphas, betas, gammas



Diagnostic Tradeoffs

Cryogenically Cooled High Purity Germanium (HPGe)

x-rays and gamma ray (5 keV — 3 MeV), high resolution

Sensitive to neutrons

Nal(TI)

Gamma rays (40 keV — 3 MeV) , 1 second integrations, poor resolution
Less-sensitive to neutrons

Bicron 412 Plastic Scintillator, (No moderator)

Charged patrticles and neutrons, sensitive to gammas, Fast, poor energy resolution, modest
efficiency

Bicron 501A Liquid Scintillator (No moderator)

Charged particles and neutrons, sensitive to gammas, Fast, good efficiency, good energy
resolution

3He (moderated with polyethylene)

neutrons, with good gamma rejection, No energy resolution,

Silicon Barrier Detectors

Proton and alpha high efficiency, high resolution, prefers vacuum

Bubble Detectors (Bubble Technologies)

Neutrons, only neutrons, Integrating, no time resolution, limited spectroscopic resolution
Proton recoil neutron detector (Los Alamos National Laboratory, Eglin/Ludlum: Precila)
Neutrons, flat response from thermal +20MeV, poor efficiency, no energy resolution
Liquid Scintillator (Beckman LS-6500)

Alpha, beta, gamma, poor energy resolution, modest species resolution

Witness Materials (Cu, Zn, In, Au, U)

Activation, mostly neutrons, poor energy resolution and efficiency



Solid State Nuclear Track Detector
Tradeoffs

Solid State Nuclear Track Detectors (SSNTD)

* charged particles and neutrons,( insensitive to gamma)

 Modest energy resolution, speciation and spatial information

« Integrating detectors, no time resolution

* Immune to electronic issues (noise, EMP)

« Low Temperature (CR-39, Lexan, cellulose nitrate, etc.)
— High efficiency, charged particles, low efficiency, neutrons (104 — 10-6)
— Operating Temperature Range < 20C — 50C
— Etching in 6.5 M NaOH, 70C, 6 hours

« High Temperature SSNTD (BP-1 Glass, BK-7 Glass, Mica, Moscovite Mica)
— Lower efficiency to charged particles and neutrons than low temp SSNTD
— Operating Temperature Range < 20C - >500C
— Etching in HF at 50C or Plasma Etch



LENR/LANR Issues

« Electrolytic systems: container and electrolyte
— Liquid incompatible with most detectors
— r? solid angle losses: distance from active region
— X-rays and charged particles absorbed
* Gas systems: container and high temperature
« r?solid angle losses: distance from active region
« X-rays and charged particles absorbed
« High temperatures and gas pressures preclude many diagnostics
« EMP and EMI issues (e.g. glow discharge)

But, neutrons and hard gammas get through!
(and no one wants them ®)

This talk emphasizes fast neutron detection



Real Time, Energy Resolved,
Neutron Detection



Real-Time Neutron Detection

Liquid scintillator-based neutron
detector

Advantages of this detector over
COTS detectors:

1. Neutrons are spectrally and
temporally resolved

2. Good neutron detection
efficiency ( 5%)

3. Pair of detectors can be used
for time-of-flight (TOF).

4. Pair of MCA’s can be used
for simultaneous energy
measurements.
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Gated Coincidence Detection

Time-of-Flight and unfolded recoil spectra allow
simultaneous neutron energy measurements.
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incidece Detection for Neutrons
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Proton recoll liquid scintillator calibration
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HPGe Neutron Detector’

"Not a good idea.



HPGe Detection of Neutrons

HPGe

Cryogenically cooled germanium gamma
ray detectors with Be window (5 keV — 3
MeV) or Al window (40 keV — 3 MeV)

Neutrons

Thermal neutrons cause Ge isotope
activation

Fast neutrons cause electron trapping
defects



Neutron Damaged HPGe Detector

Experimental Summary
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Damage consistent with average neutron flux of 10° n/sec for
> 24 hours. (but, expensive neutron detector!) 15



However, this allowed measurement of a
LENR fast neutron energy spectrum’
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Red: calculated fission neutron elastic Ge recoils
Blue: measured Co-dep neutron elastic Ge recoils
Average neutron energy > 6 MeV

'P. McDaniel, Sandia DoE National Laboratory, April, 2008 16



Witness Materials

e Via transmutation!



Pd Fissioned to Aluminum
(presence of external 2500 gauss B field)’

pt 10

x50 SE(U) 1/31/05 10:16

Sample 07-2704

S. Szpak, P.A. Mosier-Boss, C. Young, and F.E. Gordon, “Evidence of Nuclear
Reactions in the Pd Lattice,” Naturwissenschaften, 92 (2005) 394-397.
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Solid State Nuclear Track Detectors



CR-39

0 Polyallyl diglycol carbonate

1 (PADC): C,H.,O
CH;-CH,-0-C-0-CH,-CH=CH, Polymer: clear %zaragplgstic,

CHa— CHa= O -C—0-CH.—CH=CH density 1.32 g/cm? Commonly
B 2 3 2 < used for plastic lenses

0

Neutrons scatter off CR-39 atoms
Recoil atoms stripped of outer
electrons. Resulting charged
particles lose energy by ionization:
Causes dislocations in polymer
Leaves latent tracks tens of
nanometers in diameter
NaOH etching preferentially along
tracks enlarge to micrometers in
size for viewing with optical (a) ———
microscope i

Unusual side view of etched tracks
20



SNM' ID using CR-39 Neutron Spectroscopy
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Microscope image of etched CR-39 foll
exposed to neutrons from 238PuO fission
source

TSNM: “Special Nuclear Material”
2G. Phillips, et al, 14! Inter. Solid State Dosimetry Conf. New Haven, CT, 28 June 2004



Particle Identification Using CR-39

International Space Station Inertial Fusion Implosions

Palfalvi et al., Rad. Prot. Dos., Séguin et al., Rev. Sci. Instru.,

Vol. 110, p. 393 (2004) Vol. 74, p. 975 (2003)
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Track Analysis Systems Ltd., Bristol, UK



Pd/D Co-Deposition



Pd/D Co-Deposition, Three-wire Cathode
E-field Experimental Configuration

cathode

PAR 363

Pt anode

b
\

Cu electrode

regulated
DC voltage

supply
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Charged Particles



Front and Back Surface Comparison:
1 mm by 17 mm scan, 6000V E Field Exp.

ACS Symposium Book “Low Enerﬁx Nuclear Reactions Sourcebook ‘2008)

20000 20000
= 15000 Xxx o -
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R i»«?‘%&@«s&
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X %
0
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Same (x,y) locations, front and back.
Pt, Ag, Au tracks on front. Pt and Au tracks on back.
No tracks from Ag on back!



Three Wire Experiment:
Counts vs Major Axis

FRONT BACK
300 350
280 |-
€ 200 | I i
o 3 210 } 1
) | o X
140 |
100 |- X
X 70 |
0 N N | N ] h 0 i N ) N N
0.0 5.0 10.0 15.0 20.0 0.0 5.0 10.0 15.0 20.0
major axis (um) major axis (um)

Front: d1, 2 um; d2, 3.5 um; d3,8 - 12 um
Mylar experiments: 1-3 MeV a, 0.45-1 MeV p*
Back: d1, 2 um; d2 3.8 um; d3,12 - 20+ um
assignment >40 MeV a? >10 MeV p*? Neutrons?
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Neutron Spectroscopy



Neutron Interactions with CR-39
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Data are consistent with DD and DT
fusion reactions:

D+D — T (1.01 MeV) + p (3.02 MeV)

D + D — n (2.45 MeV) + 3He (0.82 MeV)
D + T (£1.01 MeV) — a (6.7-1.4 MeV) +

n(11.9-17.2 MeV)



Pd:D Co-dep Neutron Emission

Recoil prot

on

Recoil carbon & oxygen

Backside of CR-39 used in
Pd/D Co-Deposition

3 a particle rxns 3
ul)A 10 F \ / o0
= 3 *2 2 F Recoil
X v 3 C&O
S L
= o
E Y S
2
S
g 0 . .
0.1 L - 0 10 20 30 40
0.0 10.0 20.0 30.0 40.0 major axis (um)
major axis (um) > >40 MeV a, >10 MeV protons,
CR-39 that has been exposed to 0.114 MeV and neutrons can traverse

(black). 0.25 MeV (blue), 0.565 MeV (red),
1.2 MeV (green), 8 MeV (brown) and 14.8
MeV (purple) monoenergetic neutrons

Phillips et al, Radiat. Prot. Dosim Vol. 120,

pp. 457-460 (2006).

1 mm thick CR-39

» Three populations of neutrons
are observed consistent with
recoil protons, recoil carbon
and oxygen, and 3 a particle
reactions 52



Optical vs. SEM Imaging of Pd/D Co-Deposition

and DT Generator Triple Tracks

DT Neutron Pd/D Triple
Optical (1000x)
Pd/D Triple SEM (5000x)

DT neutron triple track resembles Pd/D generated triple track

Optical image of Pd/D triple track:
Bright streak in big lobe suggests bottom is shallow and rounded
No bright centers in two smaller lobes may mean steep walls

SEM image of Pd/D triple track supports these conclusions 33



Comparing DT Triple tracks

TiD e-Beam Exp Pd Co-dep DoE DT neutron generator

Triple tracks: 2C(n,n’)3 alpha
Threshold reaction > 9.6 MeV neutron
CR-39 efficiency approx 104
No Triple tracks have ever been seen in background detectors
> 10,000 DT fusion neutrons for every triple track

34



Pd/D Co-dep Solid vs
DoE DT Neutron Generator Triple Tracks

Mosier-Boss et al., EPJAP, Vol. 51, p. 20901 (2010)

Pd/D Co-dep DT neutron Pd/D Co-dep DT neutron




PdD Co-deposition Fast Neutrons and Charged

Particles >7 nuclear channels represented

14.1 MeV DT neutrons
With DoE laboratory and NNSA funding
PdID Co-dep

o3

DoE DT fusion neutrons

60
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10

o
0.5

252Cf neutrons

PdD neutrons

number of counts (arb. units)

1.3 21 2.9
proton recoil energy (MeV)

SRI replication analyzed by Dr. Lipson &
Dr. Roussetski, Lebedev

3.7

4.5

10

0

Charged Particles: protons and alphas

SRI Replication of PdD co-dep protocol
LET Analysis by Dr. Zhou, NASA JSFC

Two separate reactors & detectors

with nearly identical spectra!

> 35,000 tracks, in both reactors.
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+— Protons (10-5-07, bottom-1)
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Solid State Lattice,
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Triple tracks in CR-39 as the result of Pd-D Co-deposition:

evidence of energetic neutrons

Pamela A. Mosier-Boss + Stanislaw Szpak -
Frank E. Gordon - Lawrence P. G. Forsley

/70 years after fission discovered

2009

Received: 30 July 2008 /Revisad: 3 September 2008 /A cceptad: 14 Septamber 2008 / Published online: 1 October 2008

© SpringerVerlag 2008

Ab t Since the by Fleisch and
Pons that the excess enthalpy generated in the negatively
polarized Pd-D-D,O system was attributsble to nuclear
reactions occurring inside the Pd lattice, there have been
reports of other manifestations of nuclear activities in this
system. In pumculu. there have been reports of tritium
and helium-4 p 1, emission of energetic particles,
gamma or X-rays,andneutmm; as well as the transmu-
tation of el In this ication, the results of
Pd-D co-deposition experiments conducted with the
cathode in close contact with CR-39, a solid-state nuclear
etch detector, are reported. Among the solitary tracks due
to individual energetic particles, triple tracks are observed.
Microscopic examination of the bottom of the triple track
pit shows that the three lobes of the track are splitting
apart from a center point. The presence of three a-particle
tracks outgoing from a single point is diagnostic of the '*C
(n,n"Bec carbon breakup reaction and suggests that DT
reactions that produce 29.6 MeV neutrons are occurring
inside the Pd lattice. To our knowledge, this is the first
report of the production of energetic (29.6 MeV) neutrons
in the Pd-D system.

Keywords CR-39 - Palladium- Neutrons

Introduction

CR-39 is an allyl glycol carbonate plastic that has been
widely used as a solid-state nuclear track detector.
These detectors have been used extensively to detect
and identify such fusion products as p, D, T, *He, and &
particles resulting from inertial confinement fusion (ICF)
experiments (Séguin et al 2003). They have also been
used to detect neutrons (Phillips et al. 2006). When a
charged particle passes through the CR-39 detector, it
leaves a trail of damage along its track inside the plastic in
the foom of broken molecular chains and free radicals
(Frenje et al. 2002). After treatment with an etching agent,
tracks remain as holes or pits. The size and shape of these
pits provide information sbout the mass, charge, energy,
and direction of motion of the particles (Nikezic and Yu
2004). Therefore, CR-39 detectors can semiqualitatively
be used to distinguish the types and energies of individual
particles. Advantages of CR-39 for ICF experiments
include its i itivity to electromagnetic noise; its
resi to hanical d and its relative insensi-

Fl ic supph y
(doi:10.1007/50011 4008 -0449-x)
which is availsble © authorized usess.

P. A. Maosier-Bass ©)- S. Sq-k F. E. Gordon
SPAWAR Systems Center Pacific,

Code 7173,

San Diegn, CA 92152, USA

email: pam boss@navy.mil

L. P. G. Forsley
IWK Intemaional Com,
Ammdsle, VA 22003, USA
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tivity to electrons, X-rays, and y-rays. Consequently, CR-
39 detectors can be placed close to the source without
being damaged. Furthermore (R-39, like photographic
film, is an example of a constantly integrating detector,
which means that events are permanently stamped on the
surface of the detector. As a result, CR-39 detectors can be
used to detect events that occur either sporadically or at
low fluxes.

Earlier, the use of CR-39 to detect the emission of
energetic particles resulting from Pd-D electrolysis

2010

Fast Neutron Generation

DoE Lab with NNSA funding
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Comparison of Pd/D co-deposition and DT neutron generated
triple tracks observed in CR-39 detectors
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Multiplicity of observed or conjectured
Nuclear Channels*

Thermal, aneutronic channel, “cold fusion”
D + D — “He (24 MeV) ?

Primary DD fusion reactions:
D+D — T(1.01 MeV) + p (3.02 MeV)
D + D — n (2.45 MeV) + 3He (0.82 MeV)

Secondary fusion reactions

D + T (£1.01 MeV) — a (6.7-1.4 MeV) + n (11.9-17.2 MeV)
D + 3He (S0.82 MeV) — a (6.6-1.7 MeV) + p (12.6-17.5 MeV)

Strlpplng reactions,
aX a+1X )p
(axz!a+1Yz+1)n
Fission Reactions: going down the periodic table
* Pd->Fe->Al?
Capture Reactions: going up the periodic table
* Pd->Ag -> Cd?
* D -> D+2 recursively?
* Multi-body D capture?

If you transmute a nucleus, by whatever means, it’s nuclear!

: , 38
*Reactions and products we've observed



Summary

Nuclear effects caused by energetic neutrons and charged
particles observed by a variety of diagnostics

More real-time work required
Cosmic ray spallation neutron flux inconsequential
Statistically significant co-dep tracks observed (>10°/detector)
Multiple nuclear reactions and exit channels are present

— Fast neutrons: 2.5 MeV, 6 MeV, 14.1 MeV

— Fast protons: 3 MeV, 7+ MeV, 10 MeV, 14 MeV

— Fast alphas: up to 16 MeV

Results published in peer-reviewed Journals

Pd/D energetic particle production technology patented

Cooperative, multi-country efforts made this possible!
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Refereed Papers: The beast that would not
die...

Condensed Matter Nuclear Reaction Peer-Reviewed Publications Condensed Matter Nuclear Reactions

# Journal Volume Year Subject P.A. Mosier-Boss
1. J. Electroanal. Chem., 302 (1991a) co-dep introduced, heat, tritium, x-rays observed Massachusetts Institute of Technology, Cambridge, MA
2. J. Electroanal. Chem., 309 (1991b) modeling of D transport in bulk cathodes
3. J. Electroanal. Chem., 337 (1992) modeling and experimental D transport obs. L.P. Forsley'
4. J. Electroanal. Chem., 353 (1993) co-dep and Tritium JWK International, Annandale, VA
5. J. Electroanal. Chem., 365 (1994a) D modeling and Pd transport using XRD University of Texas, Austin, Austin, TX
6. J. Electroanal. Chem., 373 (1994b) Tritium modeling and production in co-dep
7. J. Electroanal. Chem., 379 (1994c¢) deuterium transport in co-dep Natur 75
8. J. Electroanal. Chem., 380 (1995) co-dep processes examined and discussed wissenschaften
9. Phys. Lett. A. 210 (1996a) co-dep x-ray spectroscopy, lines identified
10. Phys. Lett. A. 221 (1996b) Response to Vigier: thermal imaging
11. Fusion Technology, 33 (1998a) tritium production
12. Fusion Technology, 34 (1998b) tritium production and co-dep morphology
13. Nuovo Cim. Soc. Ital. Fis. 4,112 (1999a) thermal imaging, positive temp feedback
14. Fusion Technology, 36 (1999b) Co-dep calorimetry
15. Thermochimica Acta, 410 (2004) Co-dep calorimetry, excess heat exceeds bulk rate
16. J. Electroanal. Chem., 580 (2005a) E-field manipulation of co-dep morphology
17. Naturwissenschaften, 92 (2005b) co-dep transmutation at ejecta sites
18. Naturwissenschaften, 94 (2007a) charged particle nuclear tracks using SSNTD

19. Eur. Phys. J. Appl. Phys., 40 (2007b) SSNTD controls and nuclear particle distribution
21. Eur. Phys. J. Appl. Phys., 44 (2008b) Response to Kowalski: co-dep nuclear tracks

22. Naturwissenschaften, 96 (2009a) co-dep triple-track, DT fusion observed

23. Eur. Phys. J. Appl. Phys., 46 (2009b) co-dep nuclear particle specie and spectra

25. Eur. Phys. J. Appl. Phys. 51 (2010b) comparison of co-dep and DT fusion tracks

26. J. Condensed Matter Nucl. Sci. 3 (2010c) Response to Kowalski: co-dep nuclear species
27. J. Environ. Monitoring, 12 (2010d) Response to Shanahan: LENR observations

28. J. Condensed Matter Nucl. Sci. 4 (2011a) Co-dep calorimetry

29. J. Condensed Matter Nucl. Sci. 4 (2011b) Review of 20 years of Pd:D co-dep research

30. Detector Phys XIII, SPIE 8142 (2011c) Optical and SEM analysis of DT & PdD tracks
31. Radiation Measurements 47 (2012a) Comparison of optical and SEM DT tracks

32. J. Condensed Matter Nucl, Sci 6 (2012b) Neutron detection and characterization

33. J. Condensed Matter Nucl, Sci 6 (2012c) Co-dep calorimetry

34. J. Condensed Matter Nucl, Sci 6 (2012d) Review: LENR Nuclear Products

35. Electrochimica Acta, 88 (2013) Gamma and alpha induced Pd x-ray fluorescence

Book Chapters

20. Low Energy Nuclear Reactions Source Book, American Chemical Society, (2008a)
Co-dep model system, SSNTD controls, nuclear species and DT fusion neutrons

24. Low Energy Nuclear Reactions Source Book II, American Chemical Society, (2010a) 'Contact: larryforsley@gmail.com
Application of co-dep nuclear particles to RTG portable nuclear electric power

red indicates nuclear effects: 23 papers,
green indicates thermal effects: 8 papers



Cluster Identified?’

Black beast of Argh; Track Cluster Anomaly.... Related???

Or radioactive dust bunny? 41

- Monty Python, Terry Gilliam
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