2019 LANR/CF Colloquium at MIT honors 30-years of breakthrough science

CMNS investigators and the science community will be celebrating the 30th-anniversary of the announcement of cold fusion at the LANR/CF Colloquium at MIT on the campus of the Massachusetts Institute of Technology in Cambridge, MA on Saturday, March 23 and Sunday, March 24, 2019.

These colloquiua have been hosted for many years by Dr. Mitchell Swartz of  JET Energy Incorporated, Dr. Peter Hagelstein of the Energy Production and Energy Conversion Group at MIT, and Gayle Verner, also of JET Energy.

The focus is the science and engineering of successful Lattice Assisted Nuclear Reaction [LANR] systems, including the important roles of the lattice and material science issues, as well as electrophysics.

Dr. Swartz believes engineering, along with the benefits of teaching its principles, is vital for success of attaining active LANR systems.

He has previously demonstrated the importance of this with his engineered systems including his metamaterial high impedance aqueous PHUSOR®-type technology that was shown on the MIT campus in 2003 as part of  ICCF10, and, his dry preloaded NANOR®-type component technology demonstrated in 2012 at the Cold Fusion 101 IAP Course at MIT, which ran for 3 months thereafter.

“Where is there science without engineering?” he asks.

“When we first made ‘cat whiskers’ back in the 50s using galena (a mineral) and a perpendicular wire positioned on it to make a junction “diode” – that was considered high-tech.  Now look how far we’ve come with the engineering in that technology.” 

“Similarly,” says Dr. Swartz, “in this clean energy-production field, there is much data heralding that applied engineering has also improved results: including incremental power gain, total output power, and excess energy density which have all increased; supplemented by improving controls and many new diagnostics.”

“Research takes meticulous effort, taking the time to write it up, and if you’re lucky – submitting it and getting feedback. So that’s why we’re having a posters at the colloquium.”

Updates will be posted here and 2019 LANR/CF Colloquium website at:   http://theworld.com/~mica/2019colloq.html

Attendance to the Meeting requires pre-Registration. The room size for the Colloquium is space-limited, and due to this limited size, there will be no walk-ins.

Note that the DEADLINE for REGISTRATION is March 14th.

See accommodations options 2019 LANR/CF Hotel Options [.pdf]

See closest hotels to campus on google maps.

AGENDA and Tentative Schedule
LANR Science and Engineering: From Hydrogen to Clean Energy Production Systems

SATURDAY
I. Experimental Confirmations of LANR/CF
A, Energy Production:
Excess Heat/Tardive Thermal Power (Heat after Death)
Helium Production/Other Products
Penetrating Emissions/Particles
Distinguishing Optical/Radiofrequency/Acoustic Signatures
Engineering Methods of Activation/Control
Engineering of Applied Magnetic Field Intensities

B. Energy Conversion:
Stirling LANR Engines/Propulsion Systems
Thermoelectric Conversion/Direct LANR Electrical Generation
Rotating Linked LANR Magnetic Systems
Acoustic LANR Conversion Systems

II. Other Experimental Support for LANR/CF
Supporting Confirmations (eg Fract. And Comb Phonon Expts)

III. Theories Supporting/Consistent with LANR/CF
Lattice/Metallurgical/Material Science
Nuclear
Electromagnetic
Other

IV. Engineering Applications from/of LANR/CF

V. Reconciliation of Success with Policy/Obstruction


See the previous 2014 LANR/CF Colloquium lectures here, held on the 25th Anniversary of the announcement of cold fusion.


IEEE Meeting on “LENR Phenomenon” well attended

IEEE-logo
The IEEE Meeting on “LENR Phenomena and Potential Applications” with Professor Peter Hagelstein and Dr. Louis DeChiaro was on Sept. 23 at Teradyne in North Reading, Massachusetts.

It was sponsored by the Boston Reliability Chapter and ESD Group (Electro-Static Discharge).

LENRIA attended and captured these photos.

“The meeting registration had reached capacity and online registration had been closed,” said Steve Katinsky. “There were about 62 pre-registered, and 52 in attendance.”

Dr. Peter Hagelstein’s presentation slides for his talk Research issues associated with excess heat in the Fleischmann-Pons experiment are
here.

Dr. Louis DeChiaro“s presentation slides are here.

Dr. Louis DeChiaro presenting:
Lou and IEEE Sign1

Dr. Mitchell Swartz and Dr. Louis DeChiaro facing:
Lou and Mitchell2

Professor Peter Hagelstein and Mitchell Swartz in the foreground:
Peter Background, Mitchell Foreground3

Dr. Brian Ahern on bottom left of the meeting room:
Room Shot II Brian Ahern, Peter4

The meeting room:
Room Shot II5




Next LENR Event:

ras22nd Russian Conference on Cold Nuclear Transmutation of Chemical Elements and Ball Lighting

Chairman of the RCCNT&BL-22 Organizing Committee Yury Bazhutov

Vice-Chairmen Vladimir Bychkov, Nikolai Samsonenko
Sept 27-October 4, 2015

Dagomys, Sochi, Krasnodar region, Russia

See all Upcoming Events here.

Cold Fusion 101 at MIT for 2015

The Cold Fusion 101: Introduction to Excess Power in Fleischmann-Pons Experiments course will run again on the campus of Massachusetts Institute of Technology (MIT) over the IAP winter break Tuesday through Friday Jan. 20-23, 2015.

Professor Peter Hagelstein of Electrical Engineering and Computer Science at MIT, and Dr. Mitchell Swartz of JET Energy, Inc., will present the course with topics such as:

Excess power production in the Fleischmann-Pons experiment;
lack of confirmation in early negative experiments;
theoretical problems and Huizenga’s three miracles;
physical chemistry of PdD;
electrochemistry of PdD;
loading requirements on excess power production;
the nuclear ash problem and He-4 observations;
approaches to theory;
screening in PdD;
PdD as an energetic particle detector;
constraints on the alpha energy from experiment;
overview of theoretical approaches;
coherent energy exchange between mismatched quantum systems;
coherent x-rays in the Karabut experiment and interpretation;
excess power in the NiH system;
Piantelli experiment;
prospects for a new small scale clean nuclear energy technology.

The material presented is different each day. Mid-day sessions are scheduled, with the room location to be announced.

Jan/20 Tue 10:30AM-02:30PM TBD
Jan/21 Wed 10:30AM-02:30PM TBD
Jan/22 Thu 10:30AM-02:30PM TBD
Jan/23 Fri 10:30AM-02:30PM TBD

There is no pre-requisite or advance sign-up. Participants are welcome at individual sessions, or all the sessions.

Cold Fusion Now’s Jeremy Rys of Alien Scientist Channel has recorded previous sessions of Cold Fusion 101 which you can view on the Cold Fusion Now Channel.

For more information, visit the MIT course website at
http://student.mit.edu/searchiap/iap-BD6D0CF8E170B284E0400312852F4A61.html

Related Links

2014 Cold Fusion 101

2013 Cold Fusion 101

2013 Cold Fusion 101 Second Week Summary

Commercial Developments presented at 2014 MIT Cold Fusion Conference

The recent 2014 Cold Fusion/LENR/LANR conference from March 21st to March 23rd at Massachusetts Institute of Technology happened to overlap with the 25th anniversary of the announcement of the discovery of cold fusion at the university of Utah. Against all odds, huge strides in understanding the phenomenon were made in the last 25 years. Recently, groups have shown that this is more than a lab curiosity, it can be engineered and harnessed to safely solve the worlds energy problems. This is an overview of some commercial groups which presented at the 2014 MIT conference.

 

Jet Energy operated by Dr. Mitchel Swartz was the organizer of the conference and also presented some very interesting findings. They have been working with very small devices which can be used as a demonstration unit or operated in a huge array to produce commercial levels of heat. Dr. Swartz has been active in the field since the very start and is constantly improving on his device, the newest generation being called the Nanor. Dr. Swartz’s devices are unique because the loading and operation stages of the device are separated, allowing for simple plug-and-play operation which greatly simplifies use by groups trying to study the effect. Jet Energy has published cold fusion research since the late 1980s, Jet Energy’s recent developments involve using a magnetic effect to boost the output of his devices, which have seen COP’s of 100. This reinforces the recent developments in understanding the effect, magnetism is seems to play a role in both the cause and effect aspects of cold fusion. Dr Hagelstein of MIT made an interesting comment during one of Dr. Swartz presentations, “I can’t for the life of me understand why graphs showing gains of over 100 are being rushed through”. This is a symbol of how much things have improved in the last 25 years. We are moving from just trying to prove the effect really exists to starting to understand the cause of the phenomenon and develop commercial units from the technology.

MIT Conference video: http://www.youtube.com/watch?v=RBDImkDZ4h8

 

Clean Planet, a Japanese group with Dr. Tadahiko Mizuno as the lead scientist made their debute at the MIT conference, represented by Hideki Yoshino. Mizuno is a household name in the Cold Fusion field and has developed many well referenced experiments. It appears he has found the financial backing required to attempt to bring a commercial reactor to market. At the conference, Clean Planet showed off their proof of concept reactor which operates at a COP of 1.9 as well as some other reactors being built which are made to operate at the 1kw and 10kw power level. Their reactor is simple and an amazing spectacle to watch. Using normal nickel mesh, they create a brilliant plasma to sputter the surface of the metal, cleaning it and creating surface nanostructures which kick off the Cold Fusion effect. Preparing their material inside of the reactor may solve some of the material consistency issues other commercial groups are struggling with. They have a well equipped lab with gamma and neutron radiation detection, although they have not seen any consistent hard radiation outside their reactor during excess heat, they have some some occasional bursts. Clean Planet also presented mass spectroscopy results which confused many scientists and has started a wave of speculation regarding theory. In the mass spectroscopy results, higher masses decreased during excess heat at the expense of lower masses, opposite to what would be expected of fusion events. Clean Planet was quick to point out that these results should be seen as preliminary, their equipment can not separate deuterium and helium so until their outside gas analysis comes back they don’t have solid information. Japan is in dire need of this technology and has historically been supportive of cold fusion research, we can expect Japan to have a serious presence in the Cold Fusion commercialization race. While Mizuno skyped in, his group was represented at the conference by multiple businessmen, they look to have all the resources they need and attracting funding and talent should not be an issue. This is a company to keep an eye on, they could quickly develop a foothold at the head of this field.

MIT Conference video: http://www.youtube.com/watch?v=DB_MRUX4mo0

 

Mitsubishi Heavy Industries research program, headed by Dr. Yasuhiro Iwamura had some big developments since their last presentation 8 months ago at ICCF18. They are focusing on technology which maximizes transmutation using a gas permeation process, previously reporting that they were able to use the cold fusion effect to transmutate cesium to praseodymium, essentially producing a valuable material from a radioactive waste. While transmutation in this field has been a proven reality, a well funded drive to engineer this effect could lead to enormous advances in many fields of technology. Transmutation could solve both issues with nuclear contamination as well as material scarcity, including exotic isotopes. A research program at NRL failed to replicate these results, at ICCF18 Dr. David Kidwell spoke the same day as Dr. Imawura about NRLs failure to replicate the results, he was overly aggressive and had a very mocking tone, accused them of improper use of equipment, sloppy work and accidentally spiking samples after apparently finding praseodymium contamination in their lab. While the motives behind the NRL bullying were foggy, they ate crow pie a few months later when Toyoto affiliated labs published results showing that they had replicated the transmutation effects in this experiment. MHI originally they used gas permeation through a palladium film ion-implanted with cesium to trigger the effect and transmutate the cesium to praseodymium. At MIT, Dr. Imawura showed new developments in their transmutation research, they started developing modular experiments so they can scale up the device to commercial levels. Dr. Imawura revealed that they had began hybrid electrochemical experiments where they are using cesium in a liquid solution. This may not only be more effective due to the known electrochemical methods of triggering the effect, but it will also have engineering benefits such as cooling and scalability. This is an enormous breakthrough if it can transmutate Cesium in a liquid solution at high yields. Considering water contaminated with cesium is the main contamination at Fukushima, this technology could not only clean up the radiation but also generate heat as a side product. The potential here is enormous, not only for Japan, but for the world, and Mitsubishi Heavy Industries is quickly moving forward.

MIT Conference video: http://www.youtube.com/watch?v=OzZl9l8nn1c

 

Permanetix Corporation is a new startup which was announced at the conference, President Nikita Alexandrov, in his mid twenties, is one of the youngest researchers involved in this field. Permanetix Corporation is developing tools and experiment techniques to better study the cold fusion effect. He explained how low cost tools and new scientific instruments can help solve the cold fusion problem in the same way that they revolutionized the human genome project. He presented a robust radiation sensor which can be placed in a gas loading experiment, detecting all the low energy radiation that does not pass through the reactor walls. They detected alpha radiation testing the device, meaning that they should also be able to use this as an internal tritium detector, since tritium also emits soft radiation. Nikita Alexandrov also spoke about the challenges of real time helium detection technology and how to design a low cost helium isotope analysis system. While they have prototypes of new tools, they also presented their long term research plan, involving the mass testing of precisely created materials for the cold fusion effect using advanced versions of their tools. Both companies developing reactors as well as researchers interested in the basic science could benefit from the discovery of new materials. But since Permanetix is not making reactors, it is a challenge to fund until cold fusion is a household word. Brian Ahern, who funded many research projects during his time at DARPA, spoke up after the presentation, “You are obviously leading, or ahead of the field so funding will be a challenge”. Permanetix technology could lower the barrier to entry for research companies starting in this field. If they prove themselves and can attract the large amount of funding required for a mass materials screening project, there is no doubt their approach could pay off tremendously.

MIT Conference video: http://www.youtube.com/watch?v=RsR4rrP22Uc

 

The LENR Industry Association was represented by Steve Katinsky and presented their plan forward at the MIT conference. This trade group will position itself as a facilitator of cold fusion technologies, involved in the education and adoption of cold fusion technology worldwide. This is an important step because it shows that even in such a highly competitive field, groups are willing to work together to do what it takes in making this technology a reality. Already over two dozen groups have pledged membership to this association, involving entities such as Naval Research Lab, two branches of NASA, as well as SKINR, commercial groups and other international research entities.

MIT Conference video: http://www.youtube.com/watch?v=TMNSl-nrFXQ

 

SKINR is one last non-commercial group is worth mentioning. Sidney Kimmel Institute for Nuclear Renaissance at University of Missouri was formed by a large private investment, absorbing one of the most successful cold fusion companies at the time (Energetics) into the university. Even though they are not a commercial entity, they are possibly the most well funded and equipped research group operating today. SKINR had an excellent presentation summarizing their work in the field, available here. They are currently running many experiments in collaboration with other groups, recently adding industry giant Aerospace Corporation, a move which shows that industry leaders are biting off on Cold Fusion. SKINR is funded for the next 4 years and have constantly been innovating and learning more and more about the science behind the cold fusion effect. Recent developments include a method of surface analysis which can predict if a material will be active as well as new experiments to detect low energy radiation. Their parting message was that if low energy radiation is used as an indicator of cold fusion, it is possible to detect events down to the femto-watt level of excess heat! With multiple groups developing new experiments and techniques for studying the effect, it is expected that huge strides will be made in understanding the cold fusion effect in the coming months and years.

MIT Conference video: http://www.youtube.com/watch?v=iWL6VUPSqKQ

 

Many groups were not represented at the conference, with some of the largest commercial players absent. Defkalion was registered but pulled out last minute, which is unfortunate because researchers were very curious about the huge magnetic anomalies present in their reactor which they mentioned briefly at ICCF-18.

Leonardo corporation, the company formed by Andrea Rossi which is leading the field in terms of commercialization was of course absent. They have not presented at any recent conferences and are more focused on rapid commercialization. Recently partnering with some powerful American backers, it is rumored that they will release third party test long duration test results in the next few weeks, if the results are anywhere near as positive as the previous published tests, this field may see an explosion of interest and may finally get the recognition it deserves.

MIT IAP Cold Fusion 101 to run again

The IAP course on cold fusion co-taught by Drs. Peter Hagelstein and Mitchell Swartz is scheduled to run again in 2014 for a third year in a row.

Cold Fusion 101: Introduction to Excess Power in Fleischmann-Pons Experiments will be held on campus at the Massachusetts Institute of Technology (MIT) January 27-January 31 at 10:30AM-1:30PM in Room 4-145. The class is sponsored by the MIT Electrical Engineering and Computer Science Department where Hagelstein is a faculty member.

In 2012, the course was well-attended and featured a JET Energy, Inc demonstration of the NANOR, a nano-material, two-terminal component that generates excess energy gain using a dry, pre-loaded hydrogen fuel. Open to the public for viewing, the NANOR ran for months in Hagelstein’s office. Massachusetts State Senator Bruce Tarr visited the campus to witness the event, and is now a supporter of the pioneer technology.

Cold Fusion Now’s Jeremy Rys attended the course in 2013 and videod the lectures throughout the week. Problems with the audio feed were lessened with a second Enhanced Audio edit by uploadJ. Watch the 2013 background and theory lectures by Peter Hagelstein here, and see the experimental and technology talks by Mitchell Swartz of JET Energy, Inc. here.

The course syllabus includes:

Excess power production in the Fleischmann-Pons experiment;
lack of confirmation in early negative experiments;
theoretical problems and Huizenga’s three miracles;
physical chemistry of PdD;
electrochemistry of PdD;
loading requirements on excess power production;
the nuclear ash problem and He-4 observations;
approaches to theory;
screening in PdD;
PdD as an energetic particle detector;
constraints on the alpha energy from experiment;
overview of theoretical approaches;
coherent energy exchange between mismatched quantum systems;
coherent x-rays in the Karabut experiment and interpretation;
excess power in the NiH system;
Piantelli experiment;
and prospects for a new small scale clean nuclear energy technology.

Independent Activities Program (IAP) is designed for MIT students wishing to learn between semesters, but enrollment is open with permission from the instructor and there is no advance registration required. For more information and to contact the instructor, visit the IAP Cold Fusion 101 course page.

Related Links

Synopsis of Cold Fusion 101 2013 [.pdf] by Gayle Verner Infinite Energy Magazine

Peter Hagelstein Introduction to Excess Power … 2013

Mitchell Swartz Introduction to Excess Power … 2013

Slide Set of NANOR®type output presented at MIT IAP Course [.pdf] 2012

Pre-loaded hydrogen fuel an engineering answer for efficiency, ease and safety

Multiple independent labs are racing to produce a commercial product based on the Fleischmann-Pons Heat Effect (FPHE), most working quietly in their labs. But since the public demonstration of Andrea Rossi‘s E-Cat in January 2011, we’ve witnessed on the global theater the grueling process of actualizing a revolutionary technology.

Early prototype E-Cat had external hydrogen tank for fuel.
Early prototype E-Cat had external hydrogen tank for fuel.
It has been amazing to watch. A thermal generator based on nickel-hydrogen exothermic reactions, E-Cat design changes have been guided by efforts to make an efficient, easy-to-use, and safe commercial product.

The earliest prototypes were fueled by hydrogen gas from a canister connected to the unit. For obvious reasons, the danger of hydrogen tanks in a domestic environment present a problem, and having the fuel pre-loaded inside the new E-Cat HT removes a huge liability.

But a pre-loaded fuel cartridge also makes a compact device easy to use.

Previous announcements have set the life for a single charge at six months, after which time the contents can be recycled and a new one installed. As this first generation of new-energy technology filters out to the public, we can expect much longer life-cycles in the future.

How is this fuel pre-loaded into the less-than-a-gram nickel-powder mixture? The answer is proprietary at the moment. But what is possible?

Perhaps a material that absorbs hydrogen and then releases it slowly is used. Metallic-hydrides can do exactly that. Could there be amongst the nickel-powder another transition metal that serves this function?

While we wait to see what’s next for the E-Cat, there are others in the field that have discovered the pre-loaded reactor benefits, each having different designs.

Pre-loaded solid wire works to make heat

Scanning Electron Microscope image of treated Celani wire by MFMP.
SEM image of treated Celani wire by MFMP.
Francesco Celani used a pre-loaded wire for his live demonstrations last year at ICCF-17 and NIWeek 2012. A very different design than Rossi’s, this solid-cathode type cell is being reproduced by the Martin Fleischmann Memorial Project as an open-source enterprise with step-by-step activity documented and available online.

The group showed the results of loading hydrogen in their wire and how it affected resistivity and temperature. Stunning scanning electron microscope (SEM) images reveal close-up views of the metal and its bumpy surface.

Separating loading from activation for Pd-D systems solved by pre-loading

Pre-loading of hydrogen has also benefited palladium-deuterium (Pd-D) systems, helping to hasten initiation of the reaction, which can sometimes take weeks or even months to begin. Waiting so long for a reaction to occur makes data acquisition burdensome, and discoveries difficult.

Ideally, multiple cells would run at the same time, allowing several variables to be monitored and determined simultaneously. At one point, Drs. Fleischmann and Pons were running up to 32 cells, an expensive and still time-dependent undertaking.

SRI International experimented with pre-loading of hydrogen in fine wires as described in Calorimetric Studies of the Destructive Stimulation of Palladium and Nickel Fine Wires [.pdf]. From the paper, a description of how they did it:

SRI electrolytic cell with pre-loaded cathode.
SRI electrolytic cell with pre-loaded cathode.
1. Loading. When Pd wires were used as a substrate or as test objects these were pre-loaded electrolytically with either H or D in low molarity SrSO4 electrolytes (50μM) using procedures developed previously at SRI [8] and elsewhere [9].

2. Sealing. The atomic loading of H or D can be sealed inside the Pd lattice for extended periods (several hours or days) with the addition of very small concentrations of Hg2SO4 to the SrSO4 electrolyte and continued cathodic electrolysis [8,9]. The deposited Hg at monolayer coverage is a highly effective poison for hydrogen atom recombination, effectively preventing= desorption by inhibiting molecule formation.

The outcome?

The results show clearly that excess energy is generated both from Pd and Ni wires loaded either with deuterium or natural hydrogen5. However, data from Pd/D codeposited onto highly loaded Pd wires (solid triangles) sit on top of the plot, indicating that this category of wires generates the most excess heat. Interestingly, the Ni codeposited system also yields significant amounts of excess heat.

Pre-loaded NANOR devices can be electrically driven

Separating the long loading times from the activation of the reaction was achieved by Dr. Mitchell Swartz of JET Energy, Inc. with his nano-composite ZrO2-PdNi-D cell that is pre-loaded with hydrogen fuel creating a “reproducible active nanostructured cold fusion/lattice-assisted nuclear reaction (CF/LANR) quantum electronic device.”

In the paper Energy Gain From Preloaded ZrO2-PdNi-D Nanostructured CF/LANR Quantum Electronic Components [.pdf] by Mitchell Swartz, Gayle Verner, and Jeffrey Tolleson, the authors write:

The importance is they enable LANR devices and their integrated systems to now be fabricated, transported, and then activated. They are the future of clean, efficient energy production.

A sixth-generation NANOR was publicly demonstrated in the office of Dr. Peter Hagelstein on the campus of Massachusetts Institute of Technology (MIT) during the 2012 IAP Cold Fusion 101 course, operating from January 30 to mid-May. Swartz also described the technology in the 2013 IAP short course captured on video by Jeremy Rys.

Designed to run at low-power due to safety considerations for a multi-month demonstration on a public campus, “over several weeks, the CF/LANR quantum device demonstrated more reproducible, controllable, energy gain which ranged generally from 5 to 16 [14.1 while the course was ongoing].”

With the core smaller than 2 centimeters containing less than a gram of active material, this device produced LANR excess power density “more than 19,500 watts/kilogram of nanostructured material.”

From the paper, Swartz describes the “proprietary self-contained CF/LANR quantum electronic component, called a two terminal NANOR™-type of LANR device”:

The NANOR represents the pre-loaded core of the reactor.
The NANOR represents the pre-loaded core of the reactor.
At LANR’s nanostructured material “core” is an isotope of hydrogen, usually deuterons, which are tightly packed (“highly loaded”) into the binary metals, alloys, or in this case, nanostructured compounds, containing palladium or nickel, loaded by an applied electric field or elevated gas pressure which supply deuterons from heavy water or gaseous deuterium.

Loaded are isotopes of hydrogen -protons, protium, deuterons, deuterium, and hydrogenated organic compounds, deuterated organic compounds, D2, H2, deuterides and hydrides. Precisely for these NANOR-type LANR devices, the fuel for the nanostructured material in the core, is deuterium.

The preloaded nanostructured material is placed into the hermetically sealed enclosure which is specially designed to withstand pressure, minimize contamination, enable lock on of wires connecting to it. The enclosure is tightly fit with the electrodes.

Described in the paper, the production of the preloaded core material involves “preparation, production, proprietary pretreatment, loading, post-loading treatment, activation, and then adding the final structural elements, including holder and electrodes.”

Fig. 2 – Series II and III two terminal NANOR™-type devices containing active ZrO2-PdNiD nanostructured material at their core.
Fig. 2 – Series II and III two terminal NANOR™-type devices containing active ZrO2-PdNiD nanostructured material at their core.

Very pure materials are also required. “Contamination remains a major problem, with excess heat potentially devastatingly quenched,” the paper states.

The ratios of the NANOR’s composite elements are “in the range of Zr (~60-70%), Ni (0-30%), and Pd (0-30%) by weight, with the weights being before the oxidation step, and several later additional preparation steps. The additional D2 and H2 yield loadings (ratio to Pd) of up to more than 130% D/Pd.”

After several bakes, eventually an oxidized zirconia “surrounds, encapsulates, and separates the NiPd alloy into 7-10 nm sized ferromagnetic nanostructured islands located and dispersed within the electrically insulating zirconia dielectric.”

Each nanostructured island acts as a short circuit element during electrical discharge. These allow deuterons to form a hyperdense state in each island, where the deuterons are able to be sufficiently close together.”

The latest Series VI NANORs have had energy gains beyond 30.

More than basic science, it’s an engineering development

Pre-loaded core reactors have “a decreased size, decreased response time, improved and dual diagnostics, and increased total output energy density.”

They are compact, portable and durable. Suitable for small power needs, they can respond on-demand with scalable power.

It’s a ragged course to a next-generation clean energy technology. Even as the science is still uncertain, the new pre-loaded hydrogen reactors are an engineering development that brings us closer to that goal.

Top