has posted a video of Dr. Peter Hagelstein of the Massachusetts Institute of Technology discussing the Pons & Fleischmann Experiment and its implications for nuclear physics.

Hagelstein will be conducting an IAP course Cold Fusion 101 on the MIT campus beginning January 27-31 with collaborator Dr. Mitchell Swartz of JET Energy, developer of the NANOR technology. More information here.

From the original article (transcript):

What was the main problem of nuclear physics for the last 25 years? How did the scientific community split into two broad camps? Associate Professor of Electrical Engineering at Massachusetts Institute of Technology Peter Hagelstein explains his view on the cold fusion experiments.

“Cold fusion started in March of 1989 with the announcement of the observational facts by Fleischmann and Pons. The claim was stunning. Energy of nuclear origin, a lot of it, in a test tube, palladium electrode, heavy water: simple current, and there you have it. If true — it’s a big deal. It’s unlocking source of clean nuclear energy. All you have to do is doing some electrochemistry, and you can get clean nuclear energy. That’s magic at that time I was interested surely in. What happened next was not much fun. People tried to replicate it, and more than a hundred laboratories reported negative results. People scratched their head and they thought about how the science could work. And came to the conclusion that based on a lots of physics, and nuclear physics there was no basis for the existence of such an effect.”

“I was interested in why it’s impossible, and the role of experiment in terms of trying to sort out what’s real and what’s not real. The basic issue is that in nuclear physics people have studied nuclear reactions for many years. If you make energy in a nuclear reaction, the energy is made and the energy is carried away. That’s a consequence of fundamental laws of conservation of energy in momentum on a microscopic scale. In Fleischmann and Pons experiment the thing that was amazing is energy was being produced was nuclear, but there was no energetic nuclear emission coming off. That’s hard to understand.”

“Now we have experiments confirming the basic effect, we have experiments showing that energy is produced, that the energetic reaction products aren’t there, and the question is what to do about it. Actually, we should be very interested in these experiments. We should be interested, because we have experimental results which by now have been confirmed a great number of times. We learned about nature from doing experiments. So, here are experimental results. Can we, should we pay attention to them? Follow them up, see, where they lead? Today, sadly, the experiments in the cold fusion business are nor considered to be part of science. And that’s the resolution that we have come to as the scientific community. From my perspective, having been in labs, having seen the results, having talked to experimentalists, having looked at the data, having spent great time on it, it looks like pretty much these experiments are real. They need to be taken seriously.”

Watch the 13-minute video on Youtube here.