The videos of the lecture from Daejeon ICCF-17 have arrived. I must lay out the ground rules and provisos.  I am not allowed to rebroadcast the lectures. I am not allowed to release the password.  These are the wishes of the conveners and I have to respect them.  They, the Cold Fusion, experimenters and presenters of the lectures are the heroes of this story, not I. I am but a member of the peanut gallery.

I feel that I am at liberty to give my impression of the lectures, however you must understand that my comprehension is very limited. If that is unsatisfactory you only have yourself to blame. You should have been there.

The first lecture I shall write about is that given by Professor Hagelstein.  Here is what I understood of his lecture.  Professor Hagelstein is a theoretician. He is tasked with creating models explaining the empirical results of the Experimenters. The gold standard of a model is it’s predictive power.

Model 281 did not work and had to buried out in the back yard. However it was intuitively correct.  It predicted a coupling of phonon energy and nuclear energy. Takahashi objected to the model on the grounds that it was not reversible. It would not transmit energy in both directions. Professor Hagelstein thought this might be due to losses.

There are two elements in the coupling process: the nucleus and the phonons. The nuclear energy is too large and the phonon energy is too small. What Professor Hagelstein needed was a nuclear energy 100 times smaller, so he turned to Quarks. And then things began to look a lot brighter. How bright? 1.5keV x-ray bright. You see Karabut had been rabbiting on at a previous ICCF meeting that he was obtaining 1.5keV x-rays from his gas discharge experiments.

And then events began to make Professor Hagelstein fall off his chair in amazement and delight.  He fell off his chair three times to be exact. I would love to tell you why he fell off his chair but he began to babble mathematics and so I was lost.

However all was not lost because I managed to get something about a lossy spin Boson chopping his energy up into small enough pieces so that they were digestible by the phonons. I have a picture of a carrier wave of a radio signal that might help you visualize the coupling of the two elements. The short signal wave is the energetic nuclear and the longer carrier signal is the low energy of the phonons.

Professor Hagelstein described the process creating the x-rays was as if a little hammer was striking the surface of the mercury repeatedly.

The energy distribution of the collimated x-rays fit professor Hagelstein’s equations beautifully. The more energetic the hammer blows the broader the x-ray, which makes sense to me.

OK.  Let’s pull this thing together.

We now have a channel for energy to flow from the nucleus to the matrix and vice versa.  So, mass in the Nucleus can be annihilated and the energy transmitted to the “outside world” beyond the Coulomb barrier, and energy can also flow into the nucleus from phonons coupled to the nucleus. This energy is stored as Mass. And we all know what happens if you increase the mass of a nucleus, don’t we. It transmutes.

I am guessing either to another isotope if the mass is large enough to be a neutron, or into another element.  Professor Hagelstein said that a geologist told him that there is more aluminum along fault lines and less iron.

Your homework is to figure out why.  And that is as good as it gets for now.