Category Archives: Uncategorized

Patenting Cold Fusion Inventions before the US Patent & Trademark Office – Part 2

The following is Part 2 of a paper prepared By David J French in support of a Poster Presentation at ICCF-18, the 18th International Conference on Cold Fusion held in Columbia, Missouri over July 21 – 27, 2013. Part 1 is available at ColdFusionNow here. Part 2 now follows.

Patenting Cold Fusion Inventions before the US Patent and Trademark Office

. Part 2

Treatment of Cold Fusion Inventions before the USPTO

With the USPTO receiving over one half million applications a year, Examiners do not customarily require applicants to file proof that their alleged invention will work as represented. However, the USPTO has classified Cold Fusion and LENR technology in the same category as “perpetual motion”, anti-gravity, time travel, universal Cancer cures and guaranteed cures for baldness. These are considered to be cases where there is doubt that the alleged invention will work. In these fields Examiners are expected to require applicants to demonstrate that the alleged invention actually works. To impose this requirement the Examiner must establish a basis for a legitimate doubt in a communication to the applicant before requiring the applicant to provide proof of operability. Unfortunately, Examiners faced with Cold Fusion applications have in many instances used excessively negative and inflammatory language regarding the history of Cold Fusion science in attempting to place such a doubt on record.

Persons filing patent applications in this field have to be prepared to face a prove-it-works requirement. They do not have to prove that Cold Fusion works per se; they only have to prove that what they represent in their application is true. The disclosure accompanying their patent application must be sufficient to enable ordinary but knowledgeable workers in the field to reproduce what is promised in the patent application. This is not an area where a patent can be obtained on the basis of a prediction or prophetic insight.

Responding to a Prove-it Challenge

The best procedure to follow in answering such a requirement from a US Examiner is to place the original patent disclosure in the hands of an independent agency that will follow the instructions in that document and report-back, hopefully, that they obtained the results as predicted in the patent filing. Such evidence may not rely on after-developed understandings or procedures but must be based on the original document as filed, together with publicly available knowledge existing as of that date.

Relevant message: Make sure your Disclosure is complete when you make your formal patent filing. Be sure the invention works. Don’t promise too much. You may have to prove it!

Example that failed

James H Cook, a retired 80 year old engineer residing in Simi-Valley, California filed an application on August 19, 2009 before the US Patent Office for an invention entitled: “Energy Generation by Nuclear Acoustic Resonance”
This application became abandoned on March 9, 2013 for failure to respond to the US Patent Office Examiner’s first office action of September 9, 2012. Before addressing the reasons for the abandonment the nature of the invention and the filing will be explored. Here is an extract from the Abstract:

“(This invention) solves the problems of reliably initiating a low energy fusion reaction by loading deuterium into palladium metal via the process of electrolysis and by initiating the fusion reaction via the application of nuclear acoustic resonance. Affixed on each side of an electrolysis cell are piezoelectric transducers driven by corresponding frequency synthesizers. Surrounding the cell is a magnetic field produced by a magnetic field generator. The application of nuclear acoustic resonance, i.e. the combined application of an alternating magnetic field and of high frequency acoustic waves causes the deuterium atoms resident in the closely packed palladium metallic lattice to fuse into helium atoms with the consequent release of energy that is inherent to the fusion process.”

This is an example of a Prophetic invention: it is based on a prediction that something will happen rather than on actual tests. No data was given reporting test results. Instead the disclosure stated that this idea arose when the inventor heard about a reported melt-down in a Fleischman and Pons’s original pre-1989 experiment. He surmised that this was due to:

• “a low-level alternating magnetic field in the vicinity of the experiment caused by a transformer (presumably 60 Hz.) on the opposite side of the wall against which the fume hood containing the experiment was mounted”
• “An unrelated experiment in another part of the room was generating ultrasonic acoustic waves in the Megahertz range. It is believed that two frequencies, differing only slightly from each other, are necessary. (See the article, The Truth About DNA, subheading “A past experiment that was incomplete,” published on the Internet at chanelDNA04.html.)”
• “This application of high frequency acoustic waves causes the hydrogen atoms packed within the crystal lattice of the palladium cathode to undergo spin transitions. Upon reaching the Larmor frequency of the hydrogen atoms and achieving resonance, transitions between spin energy levels are generated. This produces a resonance scan. (See Inventor’s Theory of Operation, infra.) It is believed that for reliable initiation of the low energy fusion reaction, the first and second acoustic wave generators (17, 21) must operate at different frequencies. The specific frequencies required remain to be determined by experimentation.”
Note the frank statement that the “specific frequencies required remain to be determined by experimentation”. This was fatal.

The Examiner’s objections

Here is what the Examiner said about this application:

• “…..this “ColdFusion concept is still no more than just an unproven concept or theory.”
• “The general consensus by those skilled in the art and working at these various laboratories is that the fusion conclusion made by Fleischman and Pons was based on experimental error”
• “The general consensus by those skilled in the art is that there is no reputable evidence to support the claims of excess heat production, or the production of fusion by-products such as neutrons, gamma rays, tritium, or helium.”
• (this is) “a field that the general scientific community considers fraudulent.”
• “Since Fleischman and Pons’ 1989 announcement, there has been a continuing stream of publications demonstrating that virtually none of the ’Cold Fusion’ claims are valid.”

The Examiner summed up by reciting that he had provided a reasonable and sufficient basis for challenging the adequacy of the disclosure, concluding that the specification failed to meet the requirements of the Patent Act in terms of enabling workmen to implement the invention as promised.

The Applicant`s dilemma

The requirements for sufficient disclosure allow that it is OK to impose some modest degree of experimentation on future workmen if such experimentation will inevitably produce the right answer without undue effort on the part of an ordinary workman. However in this case, the existence of the specific frequencies that make the invention work is critical: the admission that such parameters remain to be established placed this invention in the category of an “unfinished work”. As well as imposing a prove-it requirement the Examiner rejected this filing for having an insufficient disclosure.

The applicant was given an opportunity to reply. He then decided to abandon his application. Ironically he might have been right. But his application did not meet the required standards and it could not be amended
An inventor can make an invention based upon a prediction, but

• the prediction has to be true
• the prediction has to be supported by instructions on how the benefits of the invention can be delivered reliably by others, once the patent comes to an end.
• Patents do not, however, issue for proposals which are, essentially, a suggestion that others pursue a specific line of research.

Relevance of Examiner`s condemnation of Fleischmann & Pons

The Examiner`s comments regarding Fleischmann & Pons are not relevant in the sense of requiring a response. The Examiner’s criticisms were only presented to justify his requirement that the applicant prove that the invention as described works and that the description of how to make it work was sufficient.
Filing evidence that the invention really works and that the disclosure is enabling would have resulted in an Allowance (so long as the Claims were worded to avoid the Prior Art). Unfortunately the disclosure was irreparably inadequate: it failed to teach the special acoustic frequencies that would initiate the Cold Fusion effect.


It’s very easy to obtain a US patent for Cold Fusion. Just file an application:

For a useful idea that works,

that includes a description on how to make it happen, and which

specifies a feature that is new (done in one or more “claims”).

Easily said, but challenging to fully understand.

David French is a retired patent attorney and the principal and CEO of Second Counsel Services. Second Counsel provides guidance for companies that wish to improve their management of Intellectual Property. For more information visit:

Radioactivity Decreasing Effect of 4-5 nm Silver Particles on K40

The Japan Radioisotope Association (JRIA) held its the 51th workshop of isotope and radiation researh at the University of Tokyo from July 7 to July 9. The program in Japanese is published here.

Dr. Norio Abe and Dr. Shin Iwasaki made presentations about the experiments of radioactivity decreasing effect of 4-5 nm silver particles. The below is quoted from the program and translated to English by me.

Oral Presentation: July 7 (Mon) 10:00 to 11:00 radiation effect
Chair:     Masakazu Washio (Waseda University)
Radioactivity Decreasing Effect of 4-5 nm Silver Particles on Cs134 and Cs137 in Soil, and K40 in Potassium Fertilizer
IWASAKI, Shin (Center of General Education, Tohoku Institute of Technology)
ABE, Norio (a former staff of Japan Firefly Breeding Institute, Itabashi-ku, Tokyo)

Poster Presentation: July 7 (Mon) 11:30 – July 8 (Tue) 11:00
Early Experimentation Results of Radioactivity Decreasing Effect of 4-5 nm Silver Particles on Cs134 and Cs in Soil

The oral presentation (in Japanese) was recorded by my friend and published the below url. Dr. Iwasaki said he thought the phenomenon might be a kind of LENR at about 11:47 of the video.

Nano Silver

I report the most interesting experiment result in the above presentations in this article.
Dr. Abe and Dr. Iwasaki had been announced the experimental results that the radiation of the contaminated soil was reduced when they added nano sliver solutions to the soil. This presentation showed the new experiment that nano silver particles could decrease radiation of radioactive potassium (K40).

I think this result is very important in the following points.

  • Radioactivity decreasing effect of 4-5 nm silver particles was effective for K40 other than radioactive Cs. I think they expected the effect because they have found radioactivity decreasing effect for both Cs137 and Cs134.
  • Potassium fertilizer used in the experiment can be purchased by anyone. The key material, 4-5 nm silver particles, is shipped by UFS-REFINE company. Therefore, I expect reproduction of the experiment will become much easier.
    (If anyone wants to

My summary of presentation material for the oral presentation by Dr. Iwasaki is shown below.

  • K40 is radioactive material present in nature, 0.01% abundance ratio, T1/2 = 12 billion years.
  • Because the sensitivity of spectrometer (Clear Pulse Co., A2702) is low, a large amount of potassium fertilizer is required, then they filled U9 type standard container with Potassium fertilizer (76.7g).
  • As the first position (“up” position), they put the spectrometer horizontally at the bottom of the lead shielding box and put the U9 container on the spectrometer. As the second position (“down” position), they put the U9 container horizontally at the bottom of the lead shielding box and put the spectrometer on the U9 container. They regarded two measurements, up and down positions (each measurement takes 12 hours), as one unit and calculate the average of result values.
  • They started Series I experiment from February 12, 2013. After the initial measurement, they opened the container to check the content, and transferred the content to the tray. Then, they added 5 g of Talc powder supporting nano silver particles (300 ppm) to the content and stirred it. And they added 10 cc of collagen solution supporting nano silver particles (160 ppm) to the content and stirred it carefully. After the process, they returned the content in the U9 container and sealed the joint part of the lid by tape. They did 8 units of measurements until August 9. For the measurements, they also measured background radiation many times.
    (They watered UFS-CW20F to get suitable density (160 ppm) as collagen solution supporting nano silver particles.)
  • Because in the 8 units of measurements, they missed the down position measurements in 2 times, they showed the 6 units results. Each figure shows relative ratio to the initial radiation value. Each radiation value is calculated as
    [total number of photoelectric peak area of K40] – [background].

Feb 13 up, Feb 14 down (initial value):     1.00
Feb 15 up, Feb 16 down:     0.83
Feb 17 up, Feb 18 down:     0.87
Apr 8 up, Apr 9 down:     0.81
May 5 up, May 6 down:     0.79
Jun 27 up, Jun 27 down:     0.80
Jul 24 up, Jul 25 down:     0.77
Aug 9 up, Aug 9 down:     0.80

  • As the result, the decreasing ratio is about 20%. The estimated uncertainty of the average value taking into account the “up / down” difference is about 3% to 12% and the statistical uncertainty is under 2.5%.
  • On September 10, they opened the U9 container to check the content and injected 5cc of collagen solution supporting nano silver particles (20ppm) to the center of the content. From one day later, they started Series II measurements and they are going now. They obtain the similar result in the Series II.
  • In conclusion, they can set the hypothesis that 4-5 nm silver particles can decrease the radioactivity of K40, too.

I expect that other scientists will reproduce the experiment and find new technology to reduce radioactivity of huge volume of nuclear waste.

Cold Fusion Now!



Breakthrough Energy Conference LIVE STREAM

The 2013 Breakthrough Energy Conference in Boulder Colorado just announced that they will live stream the event starting tomorrow morning, October 10th.

Cold Fusion Now’s Ruby Carat will be the first speaker tomorrow morning at 10 am Colorado time (Mountain time zone). Also featured is James Martinez, Sterling Allan and more. Here’s the schedule –

Here’s the live stream link below:

Watch live streaming video from globalbem at

Q&A with Ugo Abundo on newly forming Open Power Association

Ugo Abundo is one of the teacher’s at Leopoldo Pirelli Instruction Institute in Roma, Italia that initiated an investigation with students on cold fusion. Watch their activity at

This release came in about a new Association that group is forming to fund research.

1) What are the current projects and activities of the Open Power Association ?

The two readings of the name, “free energy” and “shared control”, are complementary.

No freedom is possible without available energy.
Aim of the Association is therefore to offer mankind the free results of research in new energy field.

Its activities cover the range from simply develop the Hydrobetatron Project (the heir of “Leopoldo Pirelli” Instruction Institute’s Athanor) to reach a synergy with the efforts of all LENR researchers aimed by our same targets.

2) What kind of testing is going on, and what results are being seen ?

We want to proof the reality of “heat excess” by doubtless calorimetric direct measurements. Actually, important results were obtained by comparison methods, and a suitable calorimetric reactor was assembled to reach the final target, direct determination.

We work on two instrumented lines, the first for screening, the second for C.O.P. recording.

Our revolutionary “fluidized bed powder cathode” was asked for Patent on April 2012.

3) What kind of attention and interest is being shown by outside individuals and organizations ?

A large attention is actually growing about us. Since we have designed and assembled the “F-pulsator” (a device to push high frequency pulses into a specially designed reactor), some reserved organizations and a lot of international-level scientists had a contact with us, to analyze their theories or experimentations by our device, according with the “modus operandi” of Open Power Association.

4) What is the funding situation for the Association ?

The Association is basically self-financed by the membership fees, and gets free funds from sustainers and investors.

5) How can interested people get involved in the association ?

We hope to involve more and more people, at first by sustaining our efforts by joining us as a member, then by sharing our results, so involving new interested people.

6) Are you interested in expanding the reach of the Association beyond Italy, and if so, what are your plans to do this ?

We are going to establish a new office in London, from where will organize meetings about the subject, using such a location as a pole for radial diffusion of world-wide free sharing of “science for mankind”.

We thanks for your kind attention to our project, and hope to offer an useful contribution.

Power equivalent to the Sun? – We already have it!

NASA Solar cross section 8Sept13By David J French

Although long, I believe that the following analysis is worth pursuing to the end.

While browsing through Wikipedia on the Internet I recently came across this interesting observation about the Sun:

“The power production by fusion in the core varies with distance from the solar center. At the center of the Sun, theoretical models estimate it to be approximately 276.5 watts/m3,[51] a power production density that more nearly approximates reptile metabolism than a thermonuclear bomb.[b] Peak power production in the Sun has been compared to the volumetric heats generated in an active compost heap. The tremendous power output of the Sun is not due to its high power per volume, but instead due to its large size.” – (under “Core”)

What is this? I always thought the Sun was a continuously self-fueled hydrogen bomb. Not only are these levels far below that of a hydrogen bomb, but the amount of heat being produced on a unit of volume basis is indeed a trickle.

A cubic meter contains 1,000,000 or 100 X 100 X 100 cubic centimeters. Therefore, according to this reference, the rate at which heat is flowing out of a cubic centimeter of the Core at the center of the Sun is 0.2765 milliwatts! This would hardly light an LED. But we must check the footnote reference; after all this is Wikipedia.

Footnote 55 links to a website operated by the Fusion and Plasmas Group of the Contemporary Physics Education Project (CPEP). CPEP is a non-profit organization of teachers, educators and physicists, with substantial student involvement. CPEP creates educational materials on contemporary physics topics for use in introductory physics classes. This website addresses introductory educational materials on fusion energy and the physics of plasmas.

This link starts by explaining that the Core, the innermost layer of the Sun where energy originates, has a density of 160 g/cm3, 10 times that of lead. At this density it might be expected that the Core would be solid. However the Core’s temperature of 15 million degrees Kelvin, virtually identical to degrees Centigrade at this temperature, or 27 million degrees Fahrenheit. This high temperature keeps the Core in a fluid plasma state.
This reference also includes a chart based on a Computer Model of the Sun at 4.5 Billion Years into its lifetime, i.e., today. This chart can be viewed at the end of the last link referenced above.

The key figure that we’re looking for is the rate at which heat is being produced in the center of the Sun, and there it is under the title: Fusion Power Density (joules/sec-m^3). At the very center of the Sun, the value is 276.5 joules/sec-m^3. This means 276.5 Watts per cubic meter just as cited in the Wikipedia article.
According to that chart, the production of energy peters out by about one quarter of the radius of the Sun (24% shown on the chart shows heat production at the rate 0.67 Watts per cubic meter.) This turns out to be a very important factor.

But wait a minute, this data is the result of a “Computer Model of the Sun”, attributed to B. Stromgrew (1965) reprinted in D. Clayton Principles of Stellar Evolution and Nucleosynthesis. New York: McGraw-Hill, 1968, and others. Maybe these mathematicians have gotten it wrong. There must be another way to verify if this set of data is correct.

United States National Aeronautics and Space Association – NASA

The Marshall Space Flight Center’s Solar Physics web site, operated as part of NASA, is an authoritative source for research about the Sun. At this site background facts about the Sun are given here: . On the very opening page the following key data is provided:

Sun Facts

Solar radius = 695,990 km = 432,470 mi = 109 Earth radii

Solar mass = 1.989 1030 kg = 4.376 1030 lb = 333,000 Earth masses

Solar luminosity (energy output of the Sun) = 3.846 1033 erg/s

Surface temperature = 5770 K = 9,930° F

Surface density = 2.07 10-7 g/cm3 = 1.6 10-4 Air density

Surface composition = 70% H, 28% He, 2% (C, N, O, …) by mass

Central temperature = 15,600,000 K = 28,000,000° F

Central density = 150 g/cm3 = 8 x Gold density

Central composition = 35% H, 63% He, 2% (C, N, O, …) by mass

Solar age = 4.57 109 yr

Now we can do some calculations.

Objective: to calculate the energy flux/power density at the Core of the Sun per unit volume arising from nuclear synthesis


Volume of a sphere = 4/3 X 3.14 X radius3

Radius of Sun (from above) = 695990 km = 700000 km = 7 X 1010 cm

Radius of Core = 1/4 Radius of Sun = 1.75 X 1010 cm

Volume of Core = 4/3 X 3.14 X (1.75 X 1010 )3 cm = 22.437 X 1030 cm3

Solar luminosity (from above) = 3.846 X 1033 ergs/sec = 3.846 1026 joules/sec

Solar Heat Flux per unit volume = total heat flow/ volume = 3.846 X 1026 joules/sec / 22.437 X 1030 cm
= 0.01714 milliwatts/cm3 (or 17 Watts/m3)

Note: this is the heat flux averaged-out over the entire Core. Nuclear syntheses does not occur evenly throughout the Core. It is at a maximum at the center and tapers-off towards its outer limit at about one quarter of the solar radius, cf:

“The temperature at the very center of the Sun is about 15,000,000° C (27,000,000° F) and the density is about 150 g/cm³ (about 10 times the density of gold or lead). Both the temperature and the density decrease as one moves outward from the center of the Sun. The nuclear burning is almost completely shut off beyond the outer edge of the core (about 25% of the distance to the surface or 175,000 km from the center). At that point the temperature is only half its central value and the density drops to about 20 g/cm³.”

This decline in the heat flux is not necessarily linear. The chart above shows an output power of 19.5 watts per cubic meter at a distance of 14% of the solar radius and 6.9 W per cubic meter at a distance of 19% of the solar radius, with heat generation tapering off to nothing at 25% of the solar radius. Accordingly, this calculated value from NASA as a source is consistent with the article and footnote in Wikipedia

Analysis – How can this be true?

Remarkable as this appears, it seems to be absolutely true: the matter at the Core of the Sun is generating heat at a rate that is less than a milliwatt per cubic centimeter. Indeed, the average rate at which heat is being generated within the Core, from the center of the Sun out to 25% of the Sun’s radius, is on the order of 0.01714 milliwatts/cm3 (or 17 Watts/m3). Astounding!

Someone else has noticed this fact and provided an annotation in the paragraph in the Wikipedia referenced above. That annotation reads as follows:

“A 50 kg adult human has a volume of about 0.05 m3, which corresponds to 13.8 watts, at the volumetric power of the solar center. This is 285 kcal/day, about 10% of the actual average caloric intake and output for humans in non-stressful conditions.”

Essentially, this says that human beings generate heat, or consume calories, at a rate that is 10 times greater than that at the center of the Sun.

How can this be true?

There are several factors that contribute. The first explanation is that the Core of the Sun is surrounded by a very large amount of matter that does not generate heat: three quarters of the solar radius. The solar radius is 700,000 km and therefore the heat generated at the center of the Sun has to pass through 525,000 km of matter in order to escape.

The NASA website states:

“Although the photons travel at the speed of light, they bounce so many times through this dense material that an individual photon takes about a million years to finally reach the interface layer. The density drops from 20 g/cm³ (about the density of gold) down to only 0.2 g/cm³ (less than the density of water) from the bottom to the top of the radiative zone. The temperature falls from 7,000,000° C to about 2,000,000° C over the same distance.”

This reference is with respect to photons traveling from the bottom to the top of the “radiative zone” between the Core of the Sun and the next layer up. This does not represent the distance to the surface of the Sun. Again, from the NASA website:

“The radiative zone extends outward from the outer edge of the core to the interface layer or tachocline at the base of the convection zone (from 25% of the distance to the surface to 70% of that distance). The radiative zone is characterized by the method of energy transport – radiation. The energy generated in the core is carried by light (photons) that bounces from particle to particle through the radiative zone.
“Although the photons travel at the speed of light, they bounce so many times through this dense material that an individual photon takes about a million years to finally reach the interface layer.”

Accordingly, this 1 million years travel time applies to a mere 45% of the solar radius. However, this is a part of the Sun where the matter is very dense.

Now the Sun is 4.5 billion years old and if we will assume that it has been radiating at the same rate (not necessarily so) over that period of time, we can imagine that a lot of heat, in the form of photons, has spent a lot of time making the trip from the Core to the outer surface where it can escape. One million years is a long time for heat to accumulate even if it is only being generated at the rate of 100 or so watts per cubic meter in the Core. And 4 1/2 billion years is a very long time. Seen from this perspective, the phenomena is a little more believable.

And there is still another way to look at it.

The number of cubic meters inside a sphere can be much greater than the number of square meters on the surface. Imagine a square meter of the Sun’s surface sitting on a pyramidal wedge that extends 700,000 km all way back into the center of the Sun. Only the last quarter of this distance is generating heat. But one quarter of the radius of the Sun is still 175,000 km. Therefore, even though the pyramid is tapering to a point, there are 175,000,000 meters of heat-generating Core material backing up that single meter on the surface.

The same analysis can be carried out for all of the square meters on the surface of the Sun. On this basis, the value for the rate of heat generation within the Core of the Sun as contrasted with the rate of heat radiation on the surface of the sun at the surface of the sun becomes more understandable.

So the proposition that we started with, that the Core of the Sun generates heat at a rate that is less than 1 milliwatt per cubic centimeter, is probably true.


Why have we done all this calculating? The answer is that we are concerned to compare solar fusion with cold fusion. But first a further observation on the issue of the “quality” of heat. Then we can compare hot and cold fusion.

My first reaction was that my concept that the Sun was a continuously self-fueled hydrogen bomb was totally wrong. Instead it represents the embers from a fire that has been smoldering for 4.5 billion years.
These are not ordinary embers however.

While the rate of heat generation in the center of the Sun is modest, the temperature is not. The NASA data provided above indicates that photons proceeding outwardly from the Core start on their journey with the temperature equivalent of 7,000,000°C. By the time they reach the surface, the temperature equivalent has dropped to 5600°C. The heat from the Core is then released into space in the form of high temperature photons. In this sense, the heat being generated in the center of the Sun is different in quality from the same amount of heat being generated in a heap of rotting manure. But this quality is lost when we use the heat of sunshine to warm our swimming pools.

One difference between hot and cold fusion is the quality of the heat being produced, at least so far. But at what cost?

This lead me to explore the efforts being made to create energy for mankind using fusion. A little bit about this topic can be found here:

Hot Fusion

For more than 30 years scientists have aspired to create usable energy using fusion. The latest version of effort is that of the International Thermonuclear Experimental Reactor – ITER:

The costs have been remarkable:

“ITER was originally expected to cost approximately €5billion, but the rising price of raw materials and changes to the initial design have seen that amount more than triple to €16billion.[10] The reactor is expected to take 10 years to build with completion scheduled for 2019.[11]”

The figures quoted are simply for this single project. Many billions more have been spent over the years by countries around the world to advance the goal of achieving useful energy output from hot fusion. There has been a lot of talk in support of this process of bringing the energy source of the Sun down to the surface of the earth. But these kinds of aspirations do not seem compatible with the calculated values for the rate of output of energy being generated within the Sun as examined within this article.

Essentially, the hot fusion scientists are not trying to emulate the Sun. They are trying to emulate a supernova! With that thought in mind, it is understandable why the United States withdrew as a primary participant from the international ITER project in 1998 although it did rejoin as a junior 9% partner in 2008.

Next is the issue of Cold Fusion

Cold Fusion

Cold Fusion has been in disrepute over the last 24 years. This is largely due to a rush-to-judgment that occurred in 1989 at a time when many laboratories around the world could not duplicate the effect.

However, particularly in the last 20 years, numerous scientists have been able to demonstrate the presence of “unexplained excess energy” arising from the Cold Fusion effect. Generally this comes from super-loading Palladium with deuterium, and more recently, Nickel with hydrogen and then stimulating the generation of unexplained heat energy by applying electrical current, ultrasound, magnetic fields or simply even higher gas pressures within the metal hydride. There is no doubt that unexplained excess energy is being produced. Now that sufficient experiments have ruled-out experimental errors and chemical effects, it is hard to imagine where this energy could come from if it were not for some form of fusion effect.

Experimental results have been producing energies at rates ranging from milliwatts to watts and even some assertions of kilowatts of output thermal power from this unexplained source of energy. The apparatus producing these outputs has always been of a table-top character. Focusing on the actual source of the reaction, the Nickel or Palladium, energy has been produced in these experiments at rates or power levels that are far higher than mere milliwatts per cubic centimeter.

The quality of this heat has been generally low, e.g. under 100°C. But recently, indications have appeared (without naming them) that much higher temperatures can be achieved, e.g. 600, 700°C. Heat of this quality is indeed valuable. Such temperatures can be used to make electricity!


Consequently, Cold Fusion has been achieving “stellar” performances over the past 24 years, at least in terms of specific power being generated! And there are now signs that the temperature potential of this process to deliver commercially valuable results is real. By these standards, it is incomprehensible why governments have not invested further support to bring this phenomenon to commercial availability.

This is probably the most important conclusion to be drawn from the very interesting facts explored in this essay. The disparity between the support for hot versus cold fusion is extreme, indeed scandalous. But this is already known, at least in one of these two communities.

David J. French Ottawa, Canada