Q&A with Ugo Abundo on newly forming Open Power Association

Ugo Abundo is one of the teacher’s at Leopoldo Pirelli Instruction Institute in Roma, Italia that initiated an investigation with students on cold fusion. Watch their activity at http://www.hydrobetatron.org/

This release came in about a new Association that group is forming to fund research.

1) What are the current projects and activities of the Open Power Association ?

The two readings of the name, “free energy” and “shared control”, are complementary.

No freedom is possible without available energy.
Aim of the Association is therefore to offer mankind the free results of research in new energy field.

Its activities cover the range from simply develop the Hydrobetatron Project (the heir of “Leopoldo Pirelli” Instruction Institute’s Athanor) to reach a synergy with the efforts of all LENR researchers aimed by our same targets.

2) What kind of testing is going on, and what results are being seen ?

We want to proof the reality of “heat excess” by doubtless calorimetric direct measurements. Actually, important results were obtained by comparison methods, and a suitable calorimetric reactor was assembled to reach the final target, direct determination.

We work on two instrumented lines, the first for screening, the second for C.O.P. recording.

Our revolutionary “fluidized bed powder cathode” was asked for Patent on April 2012.

3) What kind of attention and interest is being shown by outside individuals and organizations ?

A large attention is actually growing about us. Since we have designed and assembled the “F-pulsator” (a device to push high frequency pulses into a specially designed reactor), some reserved organizations and a lot of international-level scientists had a contact with us, to analyze their theories or experimentations by our device, according with the “modus operandi” of Open Power Association.

4) What is the funding situation for the Association ?

The Association is basically self-financed by the membership fees, and gets free funds from sustainers and investors.

5) How can interested people get involved in the association ?

We hope to involve more and more people, at first by sustaining our efforts by joining us as a member, then by sharing our results, so involving new interested people.

6) Are you interested in expanding the reach of the Association beyond Italy, and if so, what are your plans to do this ?

We are going to establish a new office in London, from where will organize meetings about the subject, using such a location as a pole for radial diffusion of world-wide free sharing of “science for mankind”.

We thanks for your kind attention to our project, and hope to offer an useful contribution.

A Physicist’s Formula

tsyganov alghero 2012Update 01/2013 —Registration of Energy Discharge in D+D→4He* Reaction in Conducting Crystals (Simulation of Experiment) [.pdf] by Edward Tsyganov from Proceedings of Channeling 2012 Conference in Alghero, Sardinia, Italy.

Cube3x3x3In my point of view, series of the experiments in Gran Sasso Laboratory under leadership of Dr. Claus Rolfs and similar experiments in Berlin by Dr. K. Czerski and colleagues during 2002-2009 show unusually high electron screening potential in metallic crystals. These experimental facts give a good mechanism how the Coulomb barrier overcame with low energy (thermal) deuterons.

“The circumstances of hot fusion are not the circumstances of cold fusion”, wrote Julian Schwinger, co-Nobel-prize winner with Richard Feynmann and Shinichiro Tomonaga in 1965 for their work on quantum electro-dynamics (QED).

But there is no shortage of hot fusion analysis of cold fusion. Might some ideas be applicable?

Edward Tsyganov believes so.

Dr. Tsyganov is a professor at University of Texas Southwestern Medical Center who specializes in nuclear detectors, but in 1975, Tsyganov was part of an international group working on the Tevatron proton accelerator at Fermilab, just after successfully completing the first Russian-American scientific collaboration on the Serpukhov 70 GeV proton accelerator in Russia.

Muon catalysis had been discovered by Professor Luis Alvarez, whom he met at Lawrence Berkeley Lab in 1976. Although exciting, muon catalytic fusion did not look very promising to Tsyganov due to the short life time span of the muon.

Later, in December 1989, he was sitting in the audience of a seminar with Martin Fleischmann at CERN in Geneva, Switzerland, having participated in the DELPHI experiment at the Large Electron Positron collider. [visit] He was very excited with Fleischmann’s presentation but, at the time, he had just introduced bent crystals for beam deflection, now used in high-energy physics. The study of crystalline structures drew him away from cold fusion research, which he had heard was “a false observation” anyway.

Gran Sasso
Inspired by experimental work performed with the Gran Sasso Laboratory Underground Nuclear Physics (LUNA) facility in Italy, Tsyganov recently returned to the topic of cold fusion. [visit]

Scientists there have shown that when a deuterium atom is embedded in a metallic crystal, the cross section, which gives a measure of the probability that a fusion reaction will occur, increases in comparison with that of free atoms.

In the 2002-2008 series of international low-energy accelerator experiments, low-energy deuterium beams directed at embedded deuterium atoms showed that, in this environment, the screening potential for the orbital electrons of the embedded atoms is substantially increased. This means that in such conditions, any supplemental embedded nuclei in a single host crystal cell could sit much closer than they normally would due to the Coulomb repulsion.

Can this idea be applied to the low-energy nuclear reaction (LENR) in a solid?

The problem of overcoming the Coulomb barrier, the powerful force that keeps positively-charged protons away from each other, is the central issue for developing clean cold fusion energy. The force that holds nuclei together is called the strong nuclear force. Though it is an extremely powerful force, it only extends for a small distance. Unless nuclei can get close enough for the strong force to take effect, positively-charged nuclei remain too far away from each other to fuse. Elements other than hydrogen have an even bigger Coulomb barrier, since they have many more protons, and a stronger positive-charge. This is true for both free particles, and those housed in a solid metal.

JET Energy model of palladium metallic lattice infused with deuterium.
But inside a metallic lattice, the negatively-charged conducting electrons are free to move about, creating a negatively-charged screen. As a result, a positively-charged proton (or deuteron) inside the lattice sees mostly negative charges. But at some point, the bare nucleus could find itself suddenly close to another of its kind, the other’s positive-charge being “hidden”, or screened, by all the surrounding negative charges.

In this environment, deuterons or other nuclei may sit closer together in one host crystalline cell than they normally would. In a paper Cold Nuclear Fusion [1], Tsyganov cites data obtained by Francesco Raiola et al, for the screening Assenbaum potential for deuterium embedded in platinum as 675 +/- 50 eV, which is around 25 times larger than for free atoms of deuterium.

“The so-called screening Assenbaum potential is usually considered as an additional energy of interaction in a fusion process, and this effective energy should be used for calculations,” writes Tsyganov.

“This means that atoms of deuterium embedded in a metallic crystal do not feel the Coulomb repulsion down to distances of 25 times smaller than the size of the free deuterium atoms, increasing the probability of barrier penetration.”

“It was evident that in such conditions two deuteron atoms could approach each other to the distance of 1/10 – 1/20 of the size of an undistorted atom, without feeling the Coulomb repulsion.”

“Normally at very low energies for the deuterium molecule, the Coulomb barrier permeability for deuterium atoms is of the order of $10^{-84}$, including the Assenbaum screening potential (27 eV). However, in an environment of a single metallic crystalline cell this value jumps by $10^{50}$ – $10^{60}$ times! At the same time the real kinetic energy of the interacting deuterium atoms is still very low, some tiny fraction of an eV. All the enhancement of Coulomb barrier permeability is due to much shorter distance between the interacting deuterium nuclei.”

At low energies, the Coulomb barrier permeability is lowered and nuclei can position closer together.
“As one can see from the graph, in the region of low effective kinetic energies, as in the case of cold fusion, the dependence of the quantum mechanical probability of Coulomb barrier penetration vs energy is very sharp.”

For Tsyganov, this illustrates the difference between hot fusion and cold fusion.

“Hot fusion produces compound nuclei through multiple single encounters of the particles. In cold fusion, particles interact with the same partner through the quantum oscillations in a ‘closed box…'”, he writes. “This oscillation frequency is directly proportional to the screening potential, or box “size”, giving an additional boost to the process.”

Suppose that two deuterium atoms are trapped inside a single crystalline cell of palladium. The electrons associated with the deuterium will have an elongated shape in response to the cloud of conduction electrons, their orbits distorted by the catalytic effect. This is what allows the deuterium nuclei to situate themselves only a fraction of the distance they would normally tolerate.

Together, these two atoms make a “quasi-molecule” that oscillates at a particular frequency. While Tsyganov admits that calculating the particular oscillation frequency of a deuterium quasi-molecule in the midst of so many potential fields inside the crystal is difficult, he uses Planck’s relation as an approximation to give a frequency $\nu = E/h$, where $E$ is the experimentally measured screening potential and $h$ is Planck’s constant.

For deuterium embedded in a platinum metallic crystal, the screening potential was measured by Raiola as about 675 eV. This gives a vibrational frequency for the quasi-molecule as $1.67 \hspace{1 mm}\text{x}\hspace{1 mm} 10^{17}$ per second, and offers an estimate of the number of times the nuclei get close enough to fuse.

Multiplying this value for the oscillation frequency by the barrier permeability, a measure of the ability to overcome the Coulomb repulsion, of $2.52 \hspace{1 mm}\text{x}\hspace{1 mm} 10^{-17}$ yields a rate of 4.21 Deuterium-Dueterium fusion events per second.

Based on the calculation above, this table estimates DD fusion rates for crystals of palladium and platinum.

“I took this observation and applied these enlarged screening potential to the condition of McKubre experiments with deuterated palladium”, says Tsyganov.[1] “Heat release of Michael McKubre and the SRI team is well explained. In fact, this is the first confirmation of the cold fusion process using independent data from accelerators.”

Tsyganov believes experiments of Yoshiaki Arata and similar experiments of Mitchell Swartz could be also explained with this mechanism, if “quantitative data on deuterium contamination in palladium nano-crystals would be available.” He is convinced that the mechanism in McKubre’s experiments and that of Arata and Swartz’ are the same.

“Experiments of Francesco Piantelli and Andrea Rossi are well fitted in the above model. Higher heat release in the Rossi case is probably explainable by the use of platinum catalyst”, writes Tsyganov.
Professor S.B. Dabagov, Professor M.D. Bavizhev and I have tried to analyze the nuclear processes occurring in the Ecat installation and provide a possible explanation for the observed results, says Tsyganov. “In addition to the slowing of the nuclear decay processes of the intermediate compound nucleus formed during the cold fusion of elements [2], some modification of the decay process of the intermediate nucleus of the compound (H+Ni)* must be assumed to provide a plausible explanation of the Rossi results. We discuss such possibilities in this paper.”

Tsyganov’s idea pertains to how nuclei might become situated close enough inside a metal to overcome the Coulomb barrier and fuse, an idea derived from hot-fusion experiments. Still, he believes this model can be applied to the cold fusion environment too, claiming predictions agree well with heat energy measured by SRI and extend to the nickel-hydrogen systems as well.

I asked Dr. Tsyganov how his model might explain some other experimental data in cold fusion.

Dr. Tsyganov attended the 2011 LANR/CF Colloquia at MIT.

Q&A with Edward Tsyganov

CFN Supposing two deuterium can fuse in this way, how would the heat be dissipated through the lattice?

Tsyganov There is the traditional belief among nuclear scientists that nothing in a nucleus could depend on the outside world. It is very true for the fast processes in a nucleus (and these processes usually are very fast due to the very small size of a nucleus) because it is necessary that some time pass to reach the outside world. This time is about $10^{-19}$ seconds and is defined by the size of atom and speed of light.

However, according to the only hypothesis of mine, the intermediate compound nucleus 4He* created in cold DD fusion, as also in other cold fusion cases, presents an absolutely unique situation. After the penetration of main Coulomb barrier (about 200 keV high), deuterons save their identities for some time, due to the residual Coulomb mini-barrier, already inside the strong potential well. This mini-barrier very much reduced and smothered by the strong interaction forces (quark-gluon mechanism) and the finite sizes of the deuterons, but still prevents immediate nucleonic exchange between the two deuterons.

This figure represents the bottom of the potential well of strong interactions of two deuterons.
In my estimations, this mini-barrier is less than 2 keV high (~1% of the main Coulomb barrier), because at this kinetic energy usual nuclear decays of 4He* are still taking place. In fact, the Gran Sasso experiments, where this enhanced screening potential was discovered, used nuclear products to detect fusion processes. However, excitation (thermal) energy at cold fusion is still more than $10^{4}$ times less than 2 keV, or about 0.040 eV. Obviously, one can expect decreasing of nuclear decay rate of 4He* with decreasing of excitation energy.

I would highlight again that the decrease of nuclear decay rate at the very low excitation energy is the only hypothesis in all my consideration.

This situation could be treated as the experimental evidence. High electron screening potentials makes the cold fusion process the must. At the same time there are no neutrons and other nuclear products detected experimentally. An explanation must be provided. The only explanation (and the very reasonable one) that I could think of is the decrease of nuclear decay rate with decreasing of the energy of excitation.

If one adopts this hypothesis, further explanation does not presents real difficulties. Quantum electrodynamics provides the framework, through exchange by the virtual photons. Julian Swinger was very close to this solution but did not make the final step. Energy of discharge 4He* to the ground state 4He is released mostly by several hundreds of low energy electrons, with very short range in the crystal. About 400 60 keV electrons produce the heat.

CFN How might the production of tritium be explained with this process?

Tsyganov Production of tritium in McKubre’s experiments could be explained, if the nuclear decay rate of 4He* in cold fusion is reduced, but still non-negligible. This rate is at least two orders of magnitude less than expected for hot fusion. Perhaps, cracks and defects of the palladium sample could also contribute. I hope this question could soon be answered in future studies.

CFN Thank you Dr. Tsyganov.

Tsyganov My pleasure.

[1] Cold Nuclear Fusion by E.N. Tsyganov published Physics of Atomic Nuclei 2012, Vol. 75, No. 2, pp. 153–159 [.pdf]

[2] Cold Fusion Continues by E.N. Tsyganov, S.B. Dabagov, and M.D. Bavizhev, from the Proceedings of “Solid State Chemistry: Nano-materials and Nanotechnology” Conference, 22-27 April, 2012, Stavropol, Russia Report in Stavropol 4-24-2012 [.pdf]

[3] Cold Nuclear Fusion by E.N. Tsyganov on Journal of Nuclear Physics [visit]

Frank Znidarsic on fossil fuels and next-generation energy: “As one door closes, another opens”

Photo: Frank Znidarsic at George Miley’s lab.

His grandfather was a farmer who immigrated to America claiming to be a coal miner, but grandpa knew nothing about coal. He did know that the growing nation needed miners to extract the newly discovered cache of carbonaceous fuel, so he did what he had to, and settled in Pennsylvania coal country. His grandson Frank Znidarsic still lives there, working in the Pennsylvania energy industry, a third-generation coal miner whose own father left this world with a bad case of black lung.

When Znidarsic writes about coal mining, and the environmental damage it causes, he does so authoritatively. Now an engineer and author, Znidarsic was the first in his family to go to college, but he labored deep underground in the mines before landing a series of jobs above-ground in the power plants that burn fossil-fuels. The second edition of his book Elementary Anti-Gravity II is almost mistitled, for the first half of the book is a condensed survey of the major sources of energy in use today from the perspective of a miner and engineer who has worked directly in the field.

The world’s current power source is met just about wholly by burning fossil-fuels like coal, natural gas, and oil. Describing each of these fuels by its method of extraction and the processing needed for commercialization, he also shows how these techniques are leaving an ecological disaster for generations to come, though he seems willing to lose the battle in order to win the war. In weighing the consequences of extracting natural gas with the ecological damage it causes, Znidarsic supports the use of natural gas over coal.

Frank Znidarsic monitors smokestack emissions in 2011.
If you are interested in what kinds of pollution are emitted by coal-fired power plants, and the complex solutions attempting to make the emissions cleaner, this book gives a concise summary of the current methods applied to this problem. He describes how costly clean coal technologies are not quite the bargain they are advertised as.

Not limited to fossil-fuels, Znidarsic also describes a brief history of nuclear accidents, including the Fukushima-Daichi Reactor #4 explosion. Referencing M. King Hubbert‘s landmark June 1956 thesis of Peak Oil in which he predicted that nuclear power would provide Earth with a technological future, Znidarsic states that cold fusion will supplant any near-future hot-fusion technology, quoting as support Jed Rothwell‘s observation that “the introduction of a new technology often follows major advances within an existing technology”.

Frank Znidarsic and Yuri Potapov at Los Alamos
Marshall McLuhan describes this as technological reversal, when one technology “flips” into another through speed-up, the way a series of photographs, brought together in rapid succession form a movie.

William Draper Harkins gives personification to this idea. Born in Titusville, Pennsylvania where the American Oil Age began, he suggested that we might get our energy by the fusion of four hydrogen atoms to make a helium atom, using Albert Einstein‘s mass-to-energy equivalence.

The second half of Elementary Anti-Gravity II is a modern science lesson, including the associated math to derive the quantum condition for cold fusion to occur. Students of physics will enjoy his algebraic derivations and the unique perspective on quantum mechanics and relativity, as well as the answer to how anti-gravity fits in.

Frank Znidarsic graduated from the University of Pittsburgh with a B.S. in Electrical Engineering in 1975. He is currently a Registered Professional Engineer in the state of Pennsylvania. In the 1980’s, he went on to obtain an A.S in Business Administration at St. Francis College. He studied physics at the University of Indiana in the 1990’s. Frank has been employed as an Engineer in the steel, mining, and utility industries. Frank has been investigating new sources of energy for twenty years. His papers have been published in numerous places including Infinite Energy Magazine and the Journal of New Energy. His work was documented in a series of videos by Seattle4Truth which you can view here.

Q&A with Frank Znidarsic

CFN You have been working in the fossil-fuel industry for years. What is your current position and what kinds of things do you do in your job today?

FZ Today I am retired, however, I am looking for commissioning contracts at power plants.

CFN Can you describe how energy returns from fossil fuels have decreased over the last century?

FZ Yes, the returns on energy were larger when the environmental costs were not considered. We use so much energy today that the environmental costs are paramount. We cannot go back to the old way of doing things, and clean energy is expensive.

CFN Talk a little about the environmental damages caused by mining practices. Is it possible to clean up the damage, and restore habitat to wildlife?

FZ Yes, strip mines can be reclaimed and water can be treated. However, I don’t believe that it is possible to restore lost streams and wells, or to stop the flow of acid water from abandoned mines. And no one really knows what all of the carbon that was released into the atmosphere will eventually do.

CFN Fracking pollutes water tables to the degree that some water supplies are combustible, and can be lit on fire right out of the tap. Wildlife has died as a result of poisonous chemicals that the industry has been allowed to keep secret. Yet it’s true that natural gas burns cleaner than coal or oil. Do you really think the benefits of natural gas outweigh the damages?

FZ Yes. Gas produces half the amount of carbon dioxide per kilowatt and the majority of the deep gas wells have caused no problems at all. I am hoping that the new wells remain in production for a long time.

CFN You’ve stated that carbon-capturing systems for coal-fired power plants can use as much as 25% of the power generated by that coal. What do you see is the future of clean coal?

FZ The price of natural gas has been unstable. Unstable prices upset the investment markets. The price of coal has been stable. On this basis, the use of coal must be continued. I don’t know if our economy can sustain the costs associated with carbon capture. I am not sure that the Earth can sustain its environment without it.

CFN Can you describe your idea of cold fusion in layman’s terms? How does this relate to anti-gravity?

FZ Yes, just as soft iron increases the strength of the electromagnetic field, the active areas in a cold fusion cell appear to increase the magnetic component of the strong nuclear force. This force is known as the nuclear spin orbit force. This increased spin orbit component tends to flip nucleons and induce Beta decays. Remarkably the same condition seems to increase the intensity of the gravitomagnetic field. I have found that this condition is fundamental to the quantum jump. I am anxiously awaiting comments on my Amazon book page.

CFN How sure are you that cold fusion will be able to provide power to the planet for a technological human future? What time-frame are we looking at, years or decades?

FZ It hard to say when could fusion technology may emerge. I have been waiting since 1989. In comparison, the production of deep natural gas arrived quickly and surprised many in the energy industry.

As with any revolutionary technology, the result rides on the shoulders of the prior work of others. The technology has now reached a point were experiment, theory, and finance are coming together. I am hoping that Dr. George Miley or Andrea Rossi will surprise us soon with commercial units. I expect commercial cold fusion products within five years.

CFN Thank-you!

FZ My pleasure.

Related Links

Youth keeping the new energy movement alive with constant creations investigating non-conventional science by Ruby Carat October 29, 2010

“Explaining LENR”

A new idea of what creates the cold fusion reaction has been articulated by Edmund Storms of Kiva Labs. Storms describes his hypothesis with the simplest terms in the updated Student’s Guide to Cold Fusion [.pdf] and in a recent paper submitted to the Journal of Condensed Matter Nuclear Science called Explaining LENR. [.pdf]

There are three distinct parts to his model.

1. The Nuclear Active Environment NAE of a crack or hollow is formed.
2. Hydrogen enters the NAE.
3. Applied power at the resonant frequency of the NAE/hydrogen combo turns mass into energy.

Storms does not say what nuclear mechanism is at work, only that it is instigated by resonance.

Peter Gluck, one of the earliest scientists to look into cold fusion/LANR/LENR, and what he has termed LENR+ for the new commercial products now being engineered, asked how this proposal answers seven crucial questions, and got Storms to answer. Re-published here from his blog EgoOut is their exchange.

Question #1: What are the consequences if the New Theory is successful?

Storms: The consequences of my theory being correct are twofold. First, the ability to replicate LENR at robust levels will improve. Once the required cracks can be manufactured on demand, the energy could be made on any scale, from that required to power a computer to a space craft.

Second, the phenomenon can be applied to solving the solar defect of neutrinos. This will cause a new understanding of the Standard model. But right now, we can only hope.

Question #2: What about the completeness of the New Theory? Is it a “transtheory”?

Storms: The model will be a “trans-theory” only to the extent that it is acknowledged as plausible and worth exploring. This acceptance is not assured at this time. As for whether one or many theories are required depends on how many ways Nature has to cause LENR. I assume only one basic method is possible. Therefore, only one theory is needed, i.e. the correct one. We will have to wait until the proper tests are made to determine which theory is correct. My model shows exactly which tests need to be done.

Question #3: Is the theory valid for all the existing LENR systems?

Storms: I base my model on hundreds of observations that show several very robust patterns of behavior. These behaviors include both the presence and absence of expected behavior. I rely on using a large number of combinations of behaviors, all of which are consistent with the logic of the model.

In addition, the model can be applied to both deuterium and hydrogen systems using any method for causing LENR. Of course, less support for the idea exists in the hydrogen system, which makes it the ideal system to use as a test of the predictions.

Question #4: Does the New Theory explain the serious problems of control, characteristic to all the LENR systems?

Storms: Control is a problem that the model addresses. I assume the rules controlling chemical behavior apply to the process that precedes the nuclear reaction, regardless how the nuclear reaction operates. Once the preconditions are understood, the controlling variables can be identified and used in the same manner they would be used to control a chemical processes. In other words, chemistry determines the rate of the nuclear reaction.

Once the required conditions are formed, the nuclear process occurs very rapidly and without any additional effort. This is similar to how energy is made in a gas furnace. The rate of energy production is determined by how fast the fuel is applied, in this case D+, and the subsequent flame does its thing without any additional effort or control.

Question #5: Does the New Theory explain the huge enhancement of energy achieved in the LENR+ systems of Rossi and Defkalion?

Storms: Rossi has succeeded in increasing energy production by finding a way to create many active cracks in the fine nickel powder. Presumably the powder has just the right size to support exactly the correct size crack. As a result, the concentration of NAE is higher than Piantelli was able to achieve in solid nickel. The secret of the process involves the method and/or the material that needs to be added to Ni to cause the cracks to form.

Question #6: Piantelli had a self-sustaining cell working for some 4 months and Rossi speaks about an active life time of the material of 6 months. It seems Ni is not destroyed but transmuted. My guess from the very start (1993 paper) was that the active sites are formed in some way by “surface dynamics”- the movements of the atoms at the very surface of the metal – many degrees of freedom.

If the NAE are active cracks in the metal and many/more active cracks mean more energy, then isn’t LENR an inherently destructive process? Is there is a concurrent process by which the structure of the metal is rebuilt, the “wounds” are healed or is the metal, in a certain sense, ‘sacrificed’, structurally speaking?

Storms: I propose that a limited and relatively constant number of active cracks can form because these result from stress relief. Once all the stress is relieved, no more cracks can form. Of course, most of the cracks made this way will be too large to be active, so that only a small number of NAE sites are making the detected energy.

The life time will be determined by variables independent of the number of active sites. For example as deuterium accumulates in the E-cat, the reaction rate will drop because the less active tritium formation reaction will start. When deuterium is used to make helium, the helium will accumulate and block access to the active sites for the deuterium.

I do not believe that any significant transmutation takes place. All measurements of this process show that this reaction is rare, except for the claim by Rossi.

Question #7: Based on the New Theory, what would you recommend as a strategy for the LENR field? On what should research and development focus as much as they can; palladium-deuterium Pd-D systems or nickel-hydrogen Ni-H systems?

Storms: This question involves politics, which makes it difficult to answer. On the one hand, the Pd system has a great deal of experimental support while the Ni system can apparently produce significant power, but based on very little understanding of the process.

If the crack model is correct, the metal is not important except that it be able to form active cracks and dissolve D or H as the required reactants. In fact, Ni might be a better host for the D reaction than Pd because it is cheaper and the D is more active than H because each D makes more energy than each H.

So, my advice is not to focus on the metal but on understanding the process. Once the process is mastered, the claims will be accepted regardless of the metal used. In fact, I think neither Ni nor Pd is the best host for the reaction.

Related Links

A Crack in the Code by Ruby Carat May 24, 2012

George H. Miley at NETS: “Let’s find out what’s there”

Cold Fusion Now attended the Nuclear and Emerging Technology for Space NETS conference held in conjunction with the Lunar and Planetary Institute‘s meeting the week of March 19 in The Woodlands, Texas. It was a fortuitous stop to catch Session 462: Advanced Concepts: LENR, Anti-Matter, and New Physics [.pdf here].

Talks entitled Advanced Propulsion Physics: Harnessing the Quantum Vacuum by Harry “Sonny” White and Project Icarus: Antimatter Catalyzed Fusion Propulsion for Interstellar Missions by R. K. Obousy, not to mention Y. E. Kim‘s Cryogenic Ignition of Deuteron Fusion in Micro/nano Scale Metal Particles, promised a worthwhile trip.

George H. Miley, Professor Emeritus of the University of Illinois Urbana-Champagne UIUC was also scheduled to speak on A Game-Changing Power Source for Spacecraft [.pdf here], a talk outlining a LENR-based General Purpose Heating Source to replace the plutonium currently used in today’s Radioisotope Thermoelectric Generators RTGs that provide heat and electricity to power science instruments on spacecraft.

Dr. Miley has explored nuclear science and plasma research for more than three decades winning numerous prestigious awards for his pioneering work and for which he holds more than a dozen patents. He is also a teacher who founded The Fusion Studies Laboratory at UIUC. He attended the NETS conference with two students presenting a poster session on a plasma propulsion system. [.pdf here]

Innovative Research Produces Excess Heat and Transmutation Products

Since 1989 Professor Miley has been experimenting with unique forms of cold fusion cells, designing electrolytic systems that use multi-layered thin-films of metal as electrodes. More recently, his team has been manufacturing specialty nano-particles coated with thin-films to host to low-energy nuclear reactions LENR.

As editor of the American Nuclear Society‘s journal Fusion Science and Technology, he was one of the few to publish results from early cold fusion experiments. He also worked with Clean Energy Technologies on the Patterson Power Cell, a product developed for commercial power generation which failed to reach market after the death of the inventor James Patterson.

Dr. Miley’s LENR research has shown both excess heat and a wide variety of transmutation products such as iron, copper, calcium, zinc, even gold and rare earth elements have been detected. His cells are composed of super-thin layers of palladium and nickel atop a metal substrate to form an electrode submerged in a heavy water solution. After cycles of loading and de-loading, he hypothesizes that hydrogen (or deuterium) collects in the small cracks and voids between the film layers forming clusters. Superconducting quantum interference devices SQUID have confirmed ultra-dense states of deuterons within palladium crystal defects.

A cluster of hydrogen squeezed between the metallic lattice from Condensed Matter Cluster Reactions in LENR Miley Hora Yang
The clusters are collections of hydrogen nuclei called protons, or deuterium nuclei called deuterons (which are protons with an added neutron). Clusters are thought to be composed of 1000 hydrogen nuclei or more, all bunched up together.

Dr. Miley uses the language nuclear active environment NAE to describe these localized clusters that lead to a reaction, cratering the surface.

When the hydrogen is so close together, an NAE will ultimately produce fusion products, creating both excess heat energy and heavier elements. It is these heavier elements which then may break apart, fissioning, creating the plethora of new transmutation elements directly measured in his cells.

From Nuclear Battery using Clusters in Nanomaterials Miley Yang Hora
Protons and deuterons are positively-charged, repelling each other strongly with a force called the Coulomb force. It is this powerful force which must be overcome for fusion to occur. Dr. Miley visualizes negatively-charged electrons shielding the positively-charged hydrogen nuclei from each other just enough for the protons and deuterons to get within range for the strong nuclear force to fuse them together. In his case, he believes that multiple pairs of deuterons are doing the majority of the fusing.

Reversing the polarity of the cell’s electrodes multiple times ‘shakes out’ the loose hydrogen in the electrode. Alternately pushing and pulling the positively-charged nuclei through the metal leaves only the most tightly-bound clusters. After repeating the cycle half-a-dozen times, the available cracks are almost all filled with clusters, increasing the probability of creating a nuclear active environment, and initiating the energy effect. As the loose protons and free electrons shoot back and forth through the material during this loading and de-loading process, they transfer momentum to the clusters, which also may help to initiate the reaction.

Dr. Miley’s current research explores a gas-loaded cell that uses multi-layered thin-film nano-particles in order to increase the number of spaces where clusters can form. The gas-loaded cell type allows for higher temperatures to heat the cell which has been shown to increase the magnitude of excess heat generated.

From Nuclear Battery Using D-Clusters in Nano-materials Miley Yang Hora

Finding that the deuterium clusters are also superconducting, Dr. Miley has conceived of additional applications that could be developed from this technology. He was at the NETS conference to talk about an idea for a new power source for spacecraft. Right now, many spacecraft power cells use plutonium, a highly radioactive and rare material difficult and expensive to process.

The General Purpose Heat Source could be replaced by a LENR heater.
Dr. Miley conceives replacing the General Purpose Heat Source currently in Radioactive Thermoelectric Generators RTGs with a LENR-based heat source. Recent experiments with the prototype cells reveal that is takes about 9 kilograms of the palladium-nickel material to generate 3 kilowatts of thermal energy. This is comparable to the 5.6 kilograms of radioactive plutonium it takes to generate the same power. But there was a caveat.

Current RTGs run for 40+ years out into interstellar space. But LENR generators are only now emerging, so how could we test a unit to be sure that it would run that long? Says Dr. Miley, “I could be brilliant or I could’ve made a mistake!”

Scientific Curiosity and Student Interest Led to Cold Fusion Research

I was able to meet Dr. Miley on March 22 one day before his NETS talk. After more than two decades of research into cold fusion, I asked him what his response to skeptics who still doubt the veracity of the findings of Drs. Fleischmann and Pons.

“I wholeheartedly disagree that anything was fraudulent. Certainly, Drs. Pons and Fleischmann – I’ve known them both personally – they are great scientists. A whole web of events caused what I think they would agree was a premature announcement to the public caused all this storm of emotions which was unfortunate.”

“Any personal ramifications of individuals is so unfortunate. But you know that’s happened to many people in the field. The field has had a series of tragic events occur where workers in it have been maligned. Emotions grew so high. It should have been done in a scientific fashion, it would’ve been so much better. But I have nothing but the highest respect for Pons and Fleischmann, such great scientists, anyone would be privileged to follow their lead in science.”

Twenty-three years ago, Dr. Miley was preparing for a plane flight to Japan when he got a call from Steve Jones of Brigham Young University asking if he would consider publishing his paper on ‘cold fusion’ in the journal of Fusion Science and Technology.

Dr Miley recalled saying “I don’t know what cold fusion is, but Steve I know you, and if you think it fits in, please send it to me and I’ll have it reviewed. I said I had to leave immediately for the airport, but ‘I’ll be back in a week and when I get back, I’ll have this paper handled by reviewers.'”

“When I got off the plane, I was surprised by my hosts who were from University of Tokyo. They came waiving the equivalent of the Wall Street Journal saying ‘what is this cold fusion, you’re an American – you must know all about it!’ And I thought ‘my gosh, if I had only taken the time to ask Steve what it was, I could answer your question’. So that was my introduction.”

“When I got back home to my office, suddenly there were five students all waiting for me who a week later wanted to do experiments. At first I was so excited thinking well all these students want to work with me, but then I realized, I happened to have more heavy water than anyone else at the university, so they wanted to use my heavy water. But they did want to work with me too!”

I have never seen so much excitement. I just said OK, if this excites my students like that, I’m all for it, let’s find out what it is.

“So then, I tried to pore over the fax I got, the famous fax that someone released of their paper prematurely around the world. But the time it got to me, it was so mutilated, I had trouble reading it. I tried to understand it as much as possible.”

“The type of work I do, I usually don’t like to repeat someone’s work. My thinking was not to try to repeat what they’d done, but try to think of some other alternate way of doing it. Being a plasma type person, thoughts raced through my mind, what we have to do is load palladium some way, why not load it with a deuterium plasma rather than an electrolytic, since I didn’t know anything about electrolytic chemistry. I learned that later.”

“So my thinking was entirely different than thinking if what they’ve done was correct or not. My thinking was ‘this is real exciting, let’s find out what’s there’.”

“Later, I had the privilege – although I don’t know if it turned out to be a exactly a privilege – I did testify at the first congressional hearing on the subject. I was the only one who hadn’t done any work in it and the congressional aid who asked me to testify said I was an unbiased, innovative researcher, and they wanted one of those stuck in between some of the people who were arguing.”

“So I ended up between Harold Furth who was head of Princeton Plasma Physics Lab, I had known him well since I worked on fusion plasmas. He testified that this whole thing was all a big mistake, that cold fusion never worked and couldn’t replace hot fusion.”

“I spoke next, and then, Martin Fleischmann chided Furth saying ‘we’ve already accomplished break-even’. He was claiming excess heat – that means more energy out than energy put in – by fusion reactions. The two of them then, with me sort of standing by not saying much of anything, got into a huge argument about that. Both were extremely articulate British debaters. Furth has unfortunately since passed away. If you go back to that testimony, I was just fascinated listening to them argue this case, it was like at the debating society again.”

Dr. Miley’s first experiments didn’t work out so well. With Heinz Hora, a theoretical physicist from University of New South Wales, he came up with a concept of Swimming Electron Layer theory, and he decided to make multi-layer thin-films on a plate and hit that with a plasma generated by a plasma focus.

“I thought it was really going to be a great experiment. What happened was as soon as I hit it, all the films fell off! They couldn’t take the plasma heat. So we ended up with nothing.”

“I discussed that with Martin Fleischmann, and he said ‘Well that was a very clever experiment you just have to think about it harder.’ I really like him. Martin really gets to the issue.”

The Patterson Cell

“That was just a technological setback. Anyone whose in science hits those, but that doesn’t stop you, you just have to find out how to go around it. A little bit later, I ran into Jim Patterson. People may not remember all this, he had the so-called Patterson Cell. He was interviewed on Good Morning America. [read transcript] He was going to have a great fusion system.”

Diagram of a Patterson Cell from Nuclear Battery Using D-Clusters in Nano-materials Miley Yang Hora
“His was quite different from the original Pons and Fleischmann type cell. His system was a packed bed flowing electrolytic system that had plastic beads that he electrolytically coated them with nickel, or maybe nickel-palladium. These beads were very small, maybe a millimeter in diameter or so, and he’d put a few thousand of those in a vessel and run the electrolytic fluid through and they formed the metal of one of the electrodes in the container.”

“Measure the temperature that came in, measure the temperature that came out, and knowing the flow rate of the fluid, you can figure how much heat went to heat up the fluid. If you knew how much electricity you were putting in for electrolysis, you know how much you were putting in for external power, subtract that to find the amount of excess heat. He was very successful in those early experiments.”

“When I saw him the first time in a meeting, I saw a picture of these beads, I said you know those look like inertial confinement fusion targets, that’s a hot fusion device. I said I know how to make those beads. It turned out I thought I did, but I didn’t”, he laughed.

From Nuclear Battery using D-Clusters in Nano-Materials Miley Yang Hora
“But I convinced Jim that what I should do is plasma deposit thin films on these, cause I realized suddenly that he had solved my problem. These beads were plastic, so when the films either expanded by heating or loading – when you load palladium it expands by a factor of well not quite two or something – a tremendous change, so if you have a thin layer of palladium or something, when you load it with deuterium, the expansion is going to cause it to change volume relative to whatever it’s sitting on, and it’ll tear it off.”

“But when bonded to these beads and expanded, the plastic gave. That allowed it to work. Jim didn’t realize it. I don’t know if I realized it first, but it dawned on me that I could coat these beads with thin layers like I had been doing on the other metal surfaces, and this would work.”

“I continued working with him and also his grandson Jim Reding who had gone to business school and founded a company Clean Energy Technology Incorporated CETI where the granddad was the Chief Technologist and the grandson was running the company. They had a contract with a hot-water heating company. I took some of his beads, and the ones I finally made – incidentally it took me a year to figure out how to do this – that’s why I say I wasn’t as smart as I thought I was, and when I looked at the beads I made under a Scanning Electron Microscope SEM to see how the structure of mine compared to the ones he made, mine really looked great. I had put on a perfectly uniform film with virtually no scratches or defects or anything. His looked horrible. The electroplating had what looked like the mountains on Mars on the surface. Terrible.”

“I used some of mine in one of his devices, and they scarcely worked at all. So that was another setback for me personally, thinking, here I’d done all this work to make perfect films, and they don’t work at all, and Jim’s do. Explain that.”

Well finally, some years later, it began to dawn on me, you don’t want perfect films, that’s a big mistake, you want lousy ones with all these defects in them because that’s where the reactions take place.

“Jim had sort of stumbled on that. He hadn’t realized what it was then either although he had observed hot spots on his beads too.”

“Unfortunately Jim had made a bucket of these beads and later, when he discovered that he’d used them all, he tried to make another batch and the second batch didn’t work right. So non-reproducibility plagued him as well. Then his grandson died prematurely of a heart attack and Jim sort of went out of business after all that. Really sad, cause he was a brilliant person.”

Teaching a New Generation of Scientists

It was the excitement of students that urged Dr. Miley to get that first cold fusion experiment going, and he has remained a dedicated mentor to young people throughout his scientific career. The George H. Miley LENR Undergraduate Scholarship [visit] is a financial award presented to a highly motivated continuing undergraduate student in the department.

Accompanying him at the conference was Paul Keutelian and Akshata Krishnamurthy, two masters degree students who work at the university’s Hyperspace Propulsion Lab. They were presenting a poster session on Helicon Injected Inertial Plasma Electrostatic Rocket, HIIPER [.pdf here].

Mr. Keutelian was interested in science all throughout his childhood and received an undergraduate degree in aerospace. “You have an open mind from your starting point, you really don’t know where you’re going to end up, you just keep going after what interests you. It’s already there, it’s just waiting to be discovered. You just have to keep an eye out. That brought me here.”

Miss Krishnamurthy always wanted to be an astronaut, and studied mechanical engineering before she decided to make rockets. “Dreams do come true, even if they don’t completely, they take you to some place, and you learn a lot in the process.”

As a young woman in this science, Miss Krishnamurthy thinks more women need to come forward and get involved. “Science isn’t just for men. Anybody can do it. It’s just the inquisitive nature that’s required, and the passion to learn.”

“It’s not hard at all”, she says. “It’s not like you have to lift heavy things all day – it’s just having fun in the lab!”

To other young people interested in studying this topic, Dr. Miley said “Not to worry about details of what you’re going to study, it’s what interests you. You want to do something that’s really interesting. You’ve got to find a field like that and keep an open mind. Tackle the problems as they come.”

“If you do that, regardless of what you start with …. , Now a degree in math, that’s such a universal starting point, that’s wonderful, but if you take physics, take science, any of these things, that’s going to help tremendously. It’s an interdisciplinary field, there’s materials science, there’s physics, there’s chemistry, I like to get plasmas in some way. If you have an inquisitive mind, you can put them all together.”

He continued, “I’ve been privileged teaching at an advanced research university, so all the students that I get are highly motivated by the time they get to me – and talented. I know that some other schools, particularly in some of our grade high schools, there’s discouragement, but I think that people just have to be determined.”

To students who are frustrated with their schools, “What they want to do is not let the system stop you, keep pushing it. I think they need to stick it out, better things will come. They’ll find inspired teachers, they may not have one right at the moment, but there’s another one some place they’ll come in contact with.”

“I feel that we can change the system.”

“That’s certainly a motivation if you get caught in that, work towards changing it as time goes on.”

Global Effort for Revolutionary Energy Technology

Dr. Miley has also collaborated with scientists around the world in the unique global effort aimed at understanding the elusive cold fusion reaction. LENR scientists have in part been brought together internationally by the rejection of their research in their home countries.

“When cold fusion was first announced and caused such a commotion, and then many people criticized Pons and Fleischmann, it became quite a negative thing”, says Dr. Miley. “The community decided that they would hold many of their meetings outside of the US because that would free them from the mounting criticism unjustly put against them here in the US.”

“If you look at the international meetings of cold fusion, the ICCF, that have been going on maybe every year or so, they rotate between Italy in Europe – Russia, the upcoming one is in Korea. These meetings brought together international scientists for this very reason. That happened independent of the Internet. The Internet has helped communications. This is either good or bad depending on what your goals are!”

He believes that “International collaboration is great because of the abilities and the new insights you get from others elsewhere. On the other hand, this is competitive world in a global economy and many of us, myself included, would like to see the US the first to develop this. But because of this situation, it may be that its first developed commercially elsewhere. In fact, Andrea Rossi as well as a Greek company Defkalion say they have commercial units already. And if that turns out to be true, this may be commercialized someplace else. Much of this gas-loaded nano-particle work originated in Japan, so you have to assume they may be ahead too.”

“So it’s competitive as well as collaborative.
It’s just the new world we have.”

Dr. Miley doesn’t know if it’s realistic to expect an internationally-funded formal global program working on this. “This is a very commercial field. Most people now are getting into it now because they feel that when the technology becomes commercial it will create money and at the same time, change the whole energy scene, so it’s very competitive.”

“Normally international collaborations like CERN or the international Tokamak are working on something that’s not as game-changing and not as threatening as this could be if somebody else beats you to it, which makes an international group awkward. I’m not sure how well they would collaborate because of each country’s worries about losing this technology. But in principle, it would be great!”

However faraway the benefits of this technology are, Dr. Miley says, “We’ve talked about different issues and challenges, but I’ve become very convinced that this is really a potential game-changing power source, maybe not for RTGs, but in general.

“There’s so many different applications. We can put them in homes, we can put them into space, you can do all sorts of things, it’s quite revolutionary – if it works as my imagination might think it would, or your imagination. So I don’t think I have to convince anyone of that. Anyway, I have gone ahead now and we’re forming a small company called LENUCO which will be based in the research park at University of Illinois to try and commercialize this. But I don’t want to fool anyone, this is a tremendous challenge. I mean, this thing may go belly up, or it may be a great success, I don’t know. It’s going to be one or the other.”

Cold Fusion Now!

Advances In Proposed D-Cluster Inertial Confinement Fusion Target George H. Miley, Xiaoling Yang, Hora Heinrich, Kirk Flippo Sandrine gaillard, Dunstin Offermann, and D. Cort Gautier.

Nuclear Battery Using D-Clusters in Nano-materials by George H. Miley, Xiaoling Yang, Heinz Hora

Condensed Matter “Cluster” Reactions in LENRs George H. Miley, Heinz Hora, Xiaoling Yang

Direct Conversion of Nuclear Radiation Energy by George H. Miley

Transcript of ABC-TV Good Morning America segment on James Patterson from Infinite Energy.

Watch this video through to the end and see Michael McKubre face-off with John Huizenga!