Cold Fusion Now! podcast with Andrew Meulenberg

Nuclear physicist and LENR theoretician Dr. Andrew Meulenberg talks about deep-orbit electrons as an explanation for LENR, and how this model addresses the vast variety of data in LENR experiments.

After retiring from Draper Laboratories, Dr. Meulenberg was visiting professor at the Indian Institute of Science, where he again met up with former colleague Dr. K.P. Sinha, a theoretical physicist and solid-state scientist, beginning a 10-year collaboration on cold fusion theory.

Ruby Carat hosts the third episode of the Cold Fusion Now! podcast series that surveys the present state of knowledge in cold fusion/LENR.

Listen at our website http://coldfusionnow.org/cfnpodcast/ or subscribe in iTunes.

Patreon is a platform for supporting creators. You can pledge as little as a dollar per episode. You can cap your monthly spend. There are thousands of creators on Patreon getting support for their work. Please support the Cold Fusion Now! podcast. Become a Patron!

Interview with Yuri Bazhutov by Peter Gluck

This is a re-post of an article written by Dr. Peter Gluck of Ego Out in Cluj, Romania.

The original article can be found here.

SHORT INTERVIEW WITH YU. N. BAZHUTOV by Peter Gluck

I had the privilege to ask a few preliminary questions from the leader of Russian LENR researchers Yuri Nikolaevich Bazhutov. They call the field Cold Nuclear Transmutation and I think this name is more realist than Cold Fusion.

Yuri Bazhutov is an ’89-er cold fusionist (excuse me) a well known member or our community, a reputed author, with 15 papers 1982 to 2014 in the LENR-CANR Library, an organizer and participant at our meetings, CNT strategist, a personality..

Q
It is encouraging to see and easy to observe how closely and seriously are followed, discussed and theorized the developments in CNT/LENR in Russia. What is the strategic thinking beyond this and the main targets?

A
After more, than 25 years of theoretical, experimental pilot studies in Cold Nuclear Transmutation in Russia we have arrived to a stage when we think about patents, demonstration devices, search for investors for realization of industrial devices. We are at a different, higher level now.

Q
Your very personal opinion: how do you see the scientific aspects; how these new developments, can they be explained theoretically and what do you and your collaborators intend to do for the experimental part?

In essence is it new science or new application (s) of already known science?

A
As co-author of the Model of the Erzion Catalysis (MEC), I believe that it explains the nature of CNT. All my experiments made in 25 years confirm this model.

MEC is built on orthodox representations of the Physics of Elementary Particles including as the main part, Quantum Chronodynamics (QCD) and, therefore it is also the new Section of Nuclear Physics

Q
The Lugano experiment despite its over-complicated thermometric calorimetry is a harbinger of a really wonderful/powerful energy source, MWhours from grams. Unfortunately, the Testers were shocked by the analytical results.
What do you think about those unexpected isotopic shifts and the dynamic processes that make these possible

A
Starting with the first experiments made by Rossi and Focardi up to the very Hot Cat tested in Lugano, MEC gives generally fine explanations and I have published about this in RCCNT&BL Proc., and in the Russian Inventing magazines (No. 1, 2012) and ISCMNS J. (No. 13, 2014). However I believe that our option of Russian E-cat on the basis of Plasma Electrolysis gives a much better perspective- heat generator at close realization still having a very high output specific power (MWhours from grams common water).

Q
On December 25, 2014 at a CNT seminary-Alexander Parkhomov and you have presented an experiment confirming the Lugano experiment using a realistic-cut-the Gordian knot simple calorimetry inspired from your experience. A very positive event.

However, after more than 50 years in and around research i have learned the cruel 1=0 rule-1 single experiment can’t generate absolute certainty. Nor Lugano, neither Parkhomov; so I ask-was the experiment repeated in house and when will the new report be published?

A
Parkhomov now works on lengthening of time of continuous work of a cell then to do atom spectroscopic and mass spectroscopic analyses of change of chemical structure and of the isotopic composition of fuel.

Peter Gluck – This was just a first discussion, I hope to continue. Bazhutov added: see and read more– and I have translated the paper.

http://vpk.name/forum/s188.html
The revolution in energetics was accomplished! The place of organic fuels was taken by the Cold nuclear Transmutation.
By A.A. Rukhadze, Yu.N. Bazhutov, A.B. Karabut, V.G. Koltashov

The era of oil burning has arrived to its end. The revolution in CNT (Cold Nuclear Transmutation) opens the way toward a new economic transformation, to the triumph of robotics, to cheaper production and the transition of the world’s economy in which Russia should not be disadvantaged.

On October 8, 2014 in the prestigious Los Alamos electronic publication Arxiv.org it was published the report of an independent group regarding the testing of the heat generator- Hot Cat created by Andrea Rossi. Six well known scientists from Italy and Sweden have tested for 32 days the functioning of the generator that allows obtaining cheap energy on the basis of a new scientific principle.

In the absence of the author of the invention (A. Rossi) there were measured all the possible parameters of the “energetic cat” After that, for an half year the scientists have processed the results in order to get comprehension. And their verdict was univocal: the Rossi generator works and produces an incredible amount of energy- the energy density is millions times greater as by burning the same quantity of any kind of organic fuel and is 3.7 times greater than the input electric energy. In the same time it is changed the isotopic composition of the fuel materials.

No nuclear radiations from the reactor could be observed during the test.
The first demonstration of working of an E-cat prototype was performed already at January 14, 2011 in Bologna, at the Physics Dept. of the University. During this demo the scientists and the journalists have seen a functioning reactor with the power of 12.5 kW at output. This works on the principle of cold nuclear transmutation as have related the authors, Andrea Rossi and Sergio Focardi.

Sergio Focardi, professor at the Bologna University – has performed even 20 years earlier the mechanism of hydrogen-nickel interaction in cooperation with the professor of the Siena University, Francesco Piantelli. These studies were done in the frame of a new physical phenomenon, cold fusion discovered by Martin Fleischmann and Stanley Pons in the year 1989.

At October 28, 2011 Andrea Rossi has already shown his first 1 Megawatt reactor sold to his first customer. Engineers and scientist were present, verifying how it works. Due to some imperfections, the reactor has produced 470 kWatts working for 5.5 hours in self-sustaining mode. There were used 100 reactor modules each with 3 branches- the whole complex of 300 reaction chambers.

The orthodox physicist overall have again ignored Rossi. According to all the canons of physics, something like this- nuclear boiler on the table- cannot exist! Amplification of energy almost 10 times is pure non-sense! And only few “heretics” of science, working for cold fusion (CF) have supported him.

Rossi had an unpredictable behavior but not so that he could be called a rogue and a charlatan as the orthodox have accused him. He has not asked money from anybody, on the contrary he has sold his house to be able to start this research. He has not chased popularity in the press; he refused interviews and has worked more with businessmen than journalists.

Rossi also has not tried to open a dialogue with the scientists – the luminaries of the nuclear physics: “The best proof of my truth will be the commercial device on the market”- he says.

The attitude toward this inventor has gradually changed- when after a dozen conferences nobody could show he cheats, secretly brings electricity to the device.

After that NASA took Rossi under its protection. Rossi could not refuse. It is clear he is safer in the US than in Italy. But NASA is only the visible part of the wall built by USA around Rossi and his invention.

It can be confirmed that the US tries to obtain complete control of the new sources of energy, the one who owns it, will be the far leader in technology.

Signals at the APEC Summit Show Big Changes Ahead
http://ireport.cnn.com/docs/DOC-1187686?ref=feeds%2Flatest
and gets rid of the oil gas dependence.

The US hopes not only to manage the flow of finance but also, on the basis of new technologies, having almost free, clean, limitless energy to perform export-oriented industrialization.

Other countries will remain behind if they will not also try to change. For this reason, in India after the ATEC summit where this issue was discussed ( see the CNN link) governmental actions were initiated to finance the development of new energy see please: http://www.e-catworld.com/2014/11/17/indian-government-urged-to-revive-cold-fusion-research-program/

It is for sure to say that Rossi’s invention cannot be kept under lock for long. In dozens of laboratories worldwide, the scientists are trying to guess the secret of the “silent Italian”, to find out his catalyst, to develop a theory of the process. In meantime, preparations are made for bringing the generators on the market. If the transition in industry, trade and transport rising humankind to a new level of automation- needs hundreds of thousands “Cold Cats” (actually they are warm or hot, N.T.) the start of these new industries will bring the oil industry in the abyss by thousands of ways – very bad for the economies that depend on hydrocarbons. It will become obvious the futility of investing in oil and its long term purchase.

In the near future we can expect a rapid development of the Cold Nuclear Transmutation (a new and more correct name than Cold Nuclear Fusion) both regarding theory and experiment, great investments will lead to breakthroughs in the related fields of science and technology. U.S. already relies on the revolution in the energy sector and may soon get its winnings. Civilization is near to a new era and we know in advance that it will be grandiose.

Russia is still among the leaders in research in Cold Nuclear Transmutation even in the absence of targeted funding, due to the still strong post-Soviet educational, theoretical and experimental research basis of its enthusiasts. The country has a Coordinating Council on the issue of Cold Nuclear Transmutation, held annual conferences and monthly seminars, in spite of the strong resistance of its orthodox-minded opponents. The Russian researchers in Cold Nuclear Transmutations have presented copyrighted theoretical models for CNT, more than 500 publications at the 25th anniversary of the discovery of CNF by Fleischmann and Pons. Based on the principles of CNT there had been created dozens of patents for the creation of new energy. A part of the researchers had been able to get small funding, others, unfortunately were forced to work abroad.

The “war of sanctions” from 2014 has shown that the US sees Russia as a threat to its dominance in Europe and world hegemony. Rossi’s success gives them a chance to retain the role of the global financial and industrial center, undermining the position of the other strong players. But the long-term decline in prices in the oil market will not necessarily mean a catastrophe for the Russian economy. With a favorable state’s attitude toward science, we will be able to recover the leading position as it was in the ‘50-‘60 years of the twentieth century. We will be able to participate in the new industrial revolution, going forward to terminate the humiliating position on the raw materials periphery of the world.

A.A. Rukhadze
Chairman of the Coordination Council of the SFA on the problem of Cold Nuclear Transmutation,
Academy of Natural Sciences and the National Academy of Sciences of the Republic of Georgia, Honored Scientist of Russia, Doctor of Science, prof., Institute of General Physics “AM Prokhorov”

Yu. N. Bazhutov member of the International Executive Committee on the issue of Cold Nuclear Transmutation, organizer of (1-21) Russian Conferences on Cold Nuclear Transmutation and the problem of the 13th International Conference on Cold Nuclear Transmutation (Dagomis 2007), Deputy. President of the Cold Nuclear Transmutation Committee (RFO), PhD, MN, IZMIRAN

A. B. Karabut AB, winner of the International Award Cold Nuclear Transmutation them. “Giuliano Preparata”for 2007.,
Laureate of the State Prize of the USSR for 1982. Member of COP Cold Nuclear Transmutation (RFO), PhD, MN, SNA “Luch”

V. G. Koltashov, head of the Center for Economic Research Institute of Globalization and Social Movements, Ph.D.

Translated by Peter Gluck, Jan 13, 2015

END RE-POST

Related Links


Russian scientist replicates Hot Cat test: “produces more energy than it consumes”

Q&A with Jack Cole on new Hot Cat replication, experiment completion

A new replication attempt of the Andrea Rossi E-Cat technology has been announced by Jack Cole on http://www.lenr-coldfusion.com/2015/01/13/hot-cat-replication-attempt/.

The Universal LENR Reactor was designed by Dale Basgall and Jack Cole and they have been posting updates since September 2012.

Nikita Alexandrov, President, Permanetix Corporation has contacted the lab and generated these details about the experiment.

 
Photo: Reaction chamber in operation. Note that the true light color was orange. Courtesy Jack Cole.
 

Q&A with Jack Cole and Nikita Alexandrov

Q A replication of the Rossi type Ni-H LENR system was posted to your website. Were you the one who performed this experiment or was it someone else?

A Yes, I was the one who performed the experiment.

Q Can you go into detail regarding the nickel powder ie: grain size, composition, purity, source, batch number, etc?

A INCO Type 255 Nickel Powder (2.2 to 2.8 um particle size). Purchased on Ebay. I also use Fe2O3 added to the nickel.

Q Can you explain which type thermocouple/DAQ system you were using?

A I’m using a type K thermocouple of the type frequently used in kilns. I use a USB thermocouple adapter that has it’s own software (http://www.pcsensor.com/index.php?_a=product&product_id=49). The power data is acquired directly from the programmable DC power supply using a Visual Basic .NET program that I wrote. The VB program samples and adjusts power levels every 5 seconds to compensate for changing resistance to maintain a constant power output.

Q Can you explain which sources you ordered your alumina materials from?

A I purchased a 12″ alumina tube from Amazon and cut it into 3″ sections. It is 3/8″ OD and 1/4″ ID. The experiment was conducted with a 3″ tube.

Q Can you explain the geometry of your reactor and heating coils as well as method of sealing?

A The heating element is simply coiled Kanthal. The seal is not hermetic (it leaks hydrogen). I tested with a dangerous gas detector and it was leaking up to the last power step. After that point, I detected no more hydrogen. It was either sealed at that point or no more hydrogen was being produced. Based on the description of how Rossi sealed his reactor in the Lugano report, I find it unlikely his seal was hermetic (unless he found a very clever method of sealing the tube).

Q Can you explain which hydrogen carrier you used? In the report it was implied it was not LiAlH4, was it magnesium based – if you do not want to go into detail can you just confirm it was not a gas or which elements were present?

A I used lithium hydroxide and aluminum powder. The advantage with this method is that it does not start producing significant amounts of hydrogen until the LiOH melts at 480C. Earlier experiments were performed with KOH and aluminum powder. It starts producing hydrogen after 100C (presumably when the water absorbed in the KOH is liberated as steam). I haven’t seen any research discussing these facts as most research looks at combining water with these elements at room temperature to produce hydrogen. I don’t add any water (not really needed since these compounds absorb water from the air). The hydrogen production can be quite vigorous as I found out in an earlier copper tube experiment where the end cap was shot across the room into the basement wall.

Q Can you tell me if you made a blank, sealed reactor for the calibration?

A The calibration (control run) was performed with the same cell with one end sealed. The lack of seal on one end is a potential limitation. What bolsters the results is that the apparent excess heat has been decreasing (makes it less likely that the lack of seal on one end gave a bad calibration). Additionally, the Delta T at the first two power steps was almost identical between the control and experimental run. Hydrogen production started at the third power step.

Q Can you tell me how many trials you performed with this system before you saw xP?

A I performed many experiments with different types of tubes before this (brass, copper, and stainless steel). The trouble with all those is the melting temperatures and difficulty sealing. Copper is easy to seal, but you have to keep it below 150C to keep the solder from melting. You can get hydrogen with KOH and aluminum at that level (which produces chemical heat). I had promising results with alumina on my first run (but I used it as it’s own calibration comparing the lower temperature curve to the higher temperature curve–certainly not ideal). Part of the difficulty has been finding the right heating element diameter to match with my DC supply to be able to produced the needed heating levels. I have done probably 15 experiments with alumina tubes, but I had the best configuration for making measurements on the last one that I reported on.

Q Would you be interested in having a sample of your spent nickel material analyzed for elemental transmutations?

A I’ll keep it after I’m done with it in case this could be done in the future. Right now, I need to work on calorimetry to verify this in a more rigorous way.

Q Would you feel comfortable having me post your answers publicly, online and not just to the private mailing list?

A You can use it in whatever way you like. Keep in mind that I am not yet convinced by these results and there is more work to be done. I might yet discover that there is a simple conventional explanation that is not LENR. The results have to convince me, and I’m not to that point yet.

Q Thanks so much, this will really help educate the general community.

Andrea Rossi on 3rd-Party Report, Industrial Heat, & 1MW Plant — New Interview

Intro: You are listening to the Q-Niverse podcast. Let me just say, before we get started, that today’s episode is being brought to you in part by ColdFusionNow.org who helped facilitate the dialogue you are about to listen to. Today I have with me Andrea Rossi. Mr. Rossi is an inventor and entrepreneur who, for many years, has worked to develop the Energy Catalyzer, also known as the E-Cat – a reactor fueled by nickel and hydrogen that allegedly harnesses “cold fusion”, or low-energy nuclear reactions, on an industrial scale. Mr. Rossi has been working on this technology for well over a decade and has recently partnered with a highly-credible commercial investor to take the technology to the “next level”. A recent third-party analysis of the E-Cat, carried out by a coalition of European professors and engineers over the course of the past year, reports that the technology is in fact producing energy well in excess of any known chemical reaction. Andrea Rossi, thank you for being with me today.

Andrea Rossi: Thank you.

John Maguire: Starting off, can you explain your thoughts and feelings over the past year waiting for the new analysis of the E-Cat? Has this been a tense time for you, or have you been too busy refining the reactor to worry much about it?

Rossi: Basically I am focused on my work which is Research and Development, and direction of the manufacturing of the E-Cat and plant. This has been, as always, a period just of work. For what concerns the report – it is for sure an important report. [It] has been made by a third, independent party. The results are interesting, [and] very problematic, and we are studying these results.

JM: Now, were you worried at all that [analysis/report] might come up with negative results? Did you have any indication over the course of the year? Or were you pretty much in the dark like everyone else?

Rossi: This report is in the hands of the professors that made it.

JM: Sure…fair enough. What do you think the ultimate impact of the report will be? Can it possibly persuade the larger scientific community or other major industrial players beside ELFORSK to get interested in LENR generally speaking, in your opinion?

Rossi: This is difficult to say…this is difficult to say. Honestly, I do not know. But our target is not to convince anybody. Our target is to make a plant that works properly. Now we have finished [with all the tests] and we are focusing exclusively on the market and on the production that we have to set up. This report is no doubt very interesting and we are studying it because, as you probably know, there is a surprising result regarding the Nickel-62 in particular, and we are studying it because we are strongly directed, under a theoretical point of view, to understand these kinds of results that was unexpected. But our main focus remains the operation of industrial plant.

JM: Now you mentioned theory there real quick, so maybe we can talk about that really quick. Do you think that the reaction can be explained within the Standard Model or do you think we’re gonna have to go well beyond that to account for what’s going on, because as you noted there were some strange changes in the powder – which we don’t really have time to get into too much – but can you put it in a theoretical context, or do you any ideas theory wise that you’re able to share?

Rossi: No, we are starting on it. It will take time because the reconciliation is not an easy task. And we are studying with specialists.

JM: You’re working with a team to develop the theory, is that the idea?

Rossi: Yes.

JM: Now getting back to the report. In regards to excess heat, the measured coefficient-of-performance, or COP, came out to be around 3.2-3.6 over a very prolonged period of time. Some experts argue the calorimetry was suitable, while others remain unsatisfied for various reasons. So first, what did you make of the review group’s methodology and excess heat measurements?

Rossi: Well the calculations have been made by the professors. I know that some of them are very well [experienced with] that kind of measurement. They have also [made a core] with manufacturer of thermal chambers. I suppose they know what they did. I want not to enter into this question because I just accept the results [I have been given]. I have nothing to comment about that. About the various opinions [out there] we do not consider them real [objections] because what’s of interest to us, again, is that the plant we have in operation works properly. Honestly we have no more time to lose in this discussion. [Concerning] the COP – you have seen in the report the COP has been calculated in a very conservative way. Every number has been calculated [within] the most conservative margin. Actually, I think [the COP] could be maybe increased but again, this is not a theoretical issue, this is a technological issue that can be seen only at a fixed point in an industrial, operational plant — no more theoretical suppositions.

JM: The new version of the E-Cat that was tested this time had an alumina casing on it. Now this as far as my understanding goes acted as an insulator…

Rossi: It has been described in the report. I don’t want to say anything about that. The report has been very well described [elsewhere] – the casing of the reactor.

JM: You brought up the 1MW plant – how is progress going on that? And to be more specific how is the new design superior to the old version, and how long do you think it will take to get to market or, at the very least, be demonstrated publically for people?

Rossi: Well, yes, the new 1MW plant has gotten a strong evolution with [regard] to the older one — mainly under the reliability point of view; under the industrial point of view. The control system is enormously more sophisticated. Basically the plant is governed by a robot. Nevertheless it will take at least one year of operation in the factory of the customer of Industrial Heat, to whom the plant has been supplied…it will take at least one year before they complete the analysis [and] all possible errors have been adjusted. After this year with the permission of the customer, because industry is not a showroom or a theatre, so we cannot just open access to the public and say, “Alright guys, come and see!” It will not be that simple, but selected visits for a person who has title to that will be open – [but] not before we consider the plant absolutely [finished] under an industrial point of view. I suppose it will take about one year…about one year from now I suppose. But when you are in this field you cannot be sure about the scheduling because you can be sure of one thing now today, and tomorrow discover you were wrong and have to change something. This is the first time – and this is important to underline – this is the first time we had the possibility to see in operation 24-hours-a-day continuously the plant because before we could only operate on it for a couple of days or three before [we encountered] a lot of problems. The [past manufacturing facilities that we installed the old 1MW plant were not in full operations]. There was not a load to supply all the energy to. So now in the real industrial operation/situation we can see all the problems that are generated from this real operation.

JM: Now you say you’ve seen it running longer than a few days can you give some idea of how long one has been running, or how long one has been tested for? Are we talking weeks?

Rossi: You know in our factory the one megawatt plant that had been presented in October 2012 — it worked at that time.  Then, we could work with it for some [amount of time], but you cannot put in exercise for long a plant like that if you don’t have a real load and if you do not have a real operation going on.

JM: Can you give us an idea of how many people are working to develop the E-Cat? Obviously you have your hands on it in some capacity, but is this a rather large team or just a small group of engineers?

Rossi: We are working with a complex team where there are specialists for any issue.

JM: Can you give an idea of how many scientists are working on [the project]?

Rossi: I prefer to not answer in detail, but what I can say is that for any single matter, we have a specialist to take care of [that].

JMGetting a bit more personal, I’m sure people are wondering what exactly has driven you all these years, and what do you hope to ultimately achieve by bringing this technology to the world? How do you hope to be remembered?

Rossi: The first stone has been put in the building so, you know, the first industrial plant, not working in an experimental warehouse, but working in the factory of a customer to produce a profit is already in operation. So this process of industrialization has begun already.

JM: What do you hope to accomplish personally?  What drives you to keep pushing this forward?

Rossi:  Well, you know, I just go one step at a time. My biggest aspiration now is to make the 1 MW plant perfect, absolutely and totally reliable, with all the defects corrected.  This is my aspiration now. After this, I do not know.

JM: Briefly, can you speak on your past work with the now-deceased Professor Sergio Focardi of the University of Bologna. I think he might be one of the unsung heroes after the story is told, along with many others of course, but he was one of the pioneers in the nickel-hydrogen work, along with [Francesco] Piantelli and others, most notably Italians. How significant in your opinion were his contributions to the genesis of the E-Cat, your work, and just your general thoughts on him?

Rossi: Focardi has been a strong collaborator with me, mainly in the period between 2007 and 2010. I have been lucky to be helped by him with his strong theoretical preparation.  For sure, he has contributed to the development of this work, and we absolutely have to be grateful forever for his precious contribution and he is always present in our memory.

JM: I know he was in a special situation in one sense because he was retired, and though his career wasn’t behind him, he could come out and support controversial work that he might not have been able to do while he was still a teaching professor, and that’s the kind of pressure many academics face in dealing with these new technologies or this new science.  And so, we need people like Sergio Focardi, we need people like Hano Essen, like Sven Kullander, who are willing to stick their necks out for new science to discover something new. Without pioneers, without people taking these kind of risks, both economic on your end, and sociologically, say in the scientific community, on the professors’ end. So I wish people were more open-minded [and] would follow their example. I think a lot of the barriers to people understanding this new technology, this new science, is again the academic pushback, so I am always encouraged by these men of integrity, whether they are sure or unsure of what’s going on, they say, “let’s look”, “let’s investigate”.  That’s why I’m always in inspired by those kinds of people, and that’s why I brought him up.

Rossi:  Yes, I agree with you.

JM: I know you don’t have a lot of time today. We appreciate all the time you afforded to us. I know there are things you can talk about, and things you cannot talk about. So before we go our separate ways, do you have any parting thoughts? Any words of wisdom or anything you think is appropriate?

Rossi: What I can say is that, at this point, we have to focus on the industrial plant in operation, because at this point in the story we are in a situation similar to the one at the dawn of the computers.  At the very beginning it was important to have the theoretical discussion on microchips, etcetera, but at a certain point, the development, and the importance of the computer, has been determined by the market, not by the scientific community.

JM: Absolutely. Thank you for taking the time out of your very busy schedule to speak to us.

Rossi: Thank you very much.  It has been a pleasure and an honor to be with you today.

Conclusion: That does it for today’s episode. Thanks again to Andrea Rossi, Ruby Carat at Cold Fusion Now.org, and thanks to you for listening. Take care, and stay tuned for more episodes in the near future.

* More of Interviews/Essays on Cold Fusion/LENR & other topics can be found at Q-Niverse.

 

New E-Cat Report Positive, 1400C+ and Isotopic Changes in Ni+Li

New E-Cat Report Download Here

Observation of abundant heat production from a reactor device
and of isotopic changes in the fuel

This test was performed by the same group as the previous test with the following names on the paper:

Giuseppe Levi
Bologna University, Bologna, Italy
Evelyn Foschi
Bologna, Italy
Bo Höistad, Roland Pettersson and Lars Tegnér
Uppsala University, Uppsala, Sweden
Hanno Essén
Royal Institute of Technology, Stockholm, Sweden

This 760 hour test is the longest running example of controllable LENR/Cold Fusion and at an excess of 5825MJ it is also the most powerful.

The Temperature peaked at above 1400C, hot enough to be extremely practical as an energy source.  The measured COP was between 3.2 and 3.6 with the authors hinting they could have pushed the device further but were cautious due to the huge energy gains when they initially turned it up a bit.

The fuel was analyzed before and after the test and showed significant changes in the elemental profile including shifts to Ni62 and depletion of other Ni isotopes as well as a shift in Lithium isotopes.

Listen to Andrea Rossi discuss the results with John Maguire here.