The Peak Oil Crisis: Cold Fusion Gets a U.S. Patent

This is a repost of and article originally published on the Falls Church News-Press here.

The Peak Oil Crisis: Cold Fusion Gets a U.S. Patent By Tom Whipple

Sometimes our government moves very slowly. In the case of granting a patent to cold fusion technology, which just might replace fossil fuels, it took 26 years. The odyssey that started with a press conference at the University of Utah back in 1989 and has bumped along below the world’s radar screen ever since, seems to be coming to an end. The cold fusion phenomenon had a brief flurry of notoriety until it was “debunked” by many physicists, a couple of universities, and the U.S. Department of Energy panel. The science fell into disrepute, its discovers were disgraced and went into exile.

Fortunately for mankind, there were a handful of experimenters who were able to reproduce the original experiments which produced anomalous heat, thereby keeping the spark of cold fusion alive, but mostly in obscure laboratories out of the purview of the mainstream press. A decade or so ago some Italian physicists made a major breakthrough which led to devices producing commercial, not just test tube, amounts of heat. This effort culminated in a number of semi-public demonstrations of the technology, which were largely ignored or denounced as conventional wisdom held that “cold fusion” was impossible.

Circa two years ago the Italian cold fusion effort, led by entrepreneur Andrea Rossi, was moved to North Carolina, linked up with a venture capital firm, and well-financed developmental work began on building commercially viable cold fusion reactors. Last February the first prototype, a one-megawatt reactor system producing steam 24 hours a day, was installed for a one-year test in an undisclosed factory somewhere in the US. This device has now been successfully operating for over six months. If all goes well for the remainder of the trial period, a report is scheduled to be issued and heat producing devices will go on sale to the public.

At some point the mainstream media will cotton to the fact that we have been led badly astray as to the viability of this technology and there indeed is an alternative to producing large amounts of energy other than by burning fossil fuels, nuclear fission, hydro, solar and wind. Obviously a technology that can produce large amounts of heat continuously at low cost and without harmful emissions or hazardous waste will catch on quickly. If not in the U.S., then I am sure the Chinese will be happy to help advance the technology.

One of the reasons there has been so much skepticism about cold fusion and Rossi’s reactor in recent years was the secrecy surrounding the inner workings of the device. Much of this secrecy was due to the developer’s inability to obtain a valid international patent on his intellectual property. When the U.S. Department of Energy declared the whole technology a hoax 25 years ago and reaffirmed this decision in the face of mounting evidence to the contrary 10 years later, the U.S. Patent Office adopted the position that it would not patent any device claiming to be based on cold fusion or anything close.

In 2008, Rossi filed for a U.S. patent on his technology, only to have it finally rejected seven years later for lack of sufficient proof that he really had developed a technology that worked. Although Rossi was granted an Italian patent in 2011, nobody thought it offered much protection against copiers of a technology that could easily be worth trillions of dollars should it come to replace fossil fuels someday.

This time around Rossi, and his patent attorneys, took a new approach to gaining the first of what will likely be many patents relating to a technology which could easily turn out to be the most important of the century. Rather than claiming that the device was based on controversial nuclear reactions, the new patent is for a simple “Fluid Heater” that raises the temperature of water by subjecting a mixture of nickel, lithium, and lithium-aluminum-hydride powders to heat. The mixture warms to hundreds of degrees centigrade and begins to produce much more heat energy than is initially applied to the powder by the built-in electric heater. There is a no mention anywhere in the patent of “cold fusion,” nor any kind of nuclear reaction. The patent is silent as to what is causing the excess heat, only saying that it occurs, leaving it to the reader to conclude that so much heat is bring produced that there must be some kind of nuclear reaction taking place – known chemical reactions will not suffice.

The patent breaks new ground in our understanding of how Rossi’s reactor works for in order to obtain his patent protection, he had to reveal the inner workings of the reactor and the composition of the fuel that was inside. The revelation in the patent that there are three separate powders, the proportion of the powders, and that the nickel catalyst must be preheated to drive out any moisture and increase the porosity of the nickel should be of great help to anyone attempting to replicate Rossi’s device. Also revealed in the patent was that each fuel load should be able to run for six months before needing to be replaced. Rossi, however, recently stated that that a single fuel load may run for a year and that the reactor currently being tested can run for long periods of time without the need to turn on the heaters that are run with outside power.

In the past year, numerous replicators have attempted to produce excess heat from devices similar to Rossi’s. One the of these replicators, Alexander Parkhomov at the University of Moscow, has been successful in at least a dozen tests. Other replicators have been able to produce excess heat, but were unable to control their reactors which quickly melted down due to the massive amount of heat being generated. With this new information from the patent, we should soon be seeing many successful replications and put to rest assertions that the technology is a fraud.

For those of us who have been following this technology for over a quarter of a century, the granting of a U.S. patent marks a major milestone in the history of science for it offers the opportunity to get mankind beyond the age of carbon and nuclear fission fuels and all that they have wrought – rogue petro state governments, pollution, global warming, and dangerous radioactive wastes. For now, the major question is whether this or similar technologies can come into widespread use fast enough to slow and then halt the many adverse societal, economic and climatological trends with which we are currently beset.

This is a repost of The Peak Oil Crisis: Cold Fusion Gets a U.S. Patent By Tom Whipple originally published on the Falls Church News-Press here.

Andrea Rossi Receives United States ECAT Patent

Andrea Rossi just received his first U.S. patent for his ECAT from the United States Patent and Trademark Office.

The Patent covers the ECAT as a Fluid Heater based on the Rossi Effect in all its details. Since the Rossi Effect is the main source of energy of the ECAT, this means that the ECAT Core Technology is protected by this patent. The Rossi Effect is based on the exothermal reaction between Lithium and Hydrogen which is catalyzed by Nickel or any other Group 10 element in the Periodic Table, including Palladium and Platinum. – See more at: http://ecat.com/news/e-cat-patent-granted-by-uspto#sthash.XcAVNL9L.dpuf

ECAT.com has information, links, and a Q and A with Rossi regarding this latest news.

Fleischmann-Pons boil off accompanies Introduction to Cold Fusion

Published on May 8, 2015 by Jed Rothwell Youtube Channel:

This video was provided to LENR-CANR.org by Prof. Martin Fleischmann, IMRA Europe. It shows a time lapse video of four cells driven to boiling. This experiment was described in the following paper:

Fleischmann, M. and S. Pons. Calorimetry of the Pd-D2O System: from Simplicity via Complications to Simplicity. in Third International Conference on Cold Fusion.

http://lenr-canr.org/acrobat/Fleischmancalorimetra.pdf

IMRA time lapse video of boil off experiment
https://youtu.be/Tn9K1Hvw434

This original Fleischmann and Pons video shows the dramatic heat effect of the cold fusion reaction on the water fuel.

On Jed Rothwell Youtube Channel, it accompanies the Brief Introduction to Cold Fusion:

A six-minute introduction to cold fusion (the Fleischmann-Pons effect). The script and Explanatory Notes and Additional Resources are here: http://lenr-canr.org/wordpress/?page_id=1618

This video explains why we know that cold fusion is a real effect, why it is not yet a practical source of energy, and why it will have many advantages if it can be made practical.

For more information, please see http://lenr-canr.org

Brief Introduction to Cold Fusion
https://youtu.be/HjvL4zNLOGw

Thoughts on Attending ICCF-19 in Padua by David French

The Need for Experiments

It’s been just 3 weeks since ICCF-19 concluded in Padua and one week since my return. I’ve been asked many times what I learned at this event and what was important.

Of course, that question is unfair: many important things occurred in the course of the week. I may not have actually appreciated the main significance of a good number of them. But for me, a highlight was seeing Dr. Alexander Parkhomov in person and watching his courageous response to the barrage of questions he received as he stood at his poster, his granddaughter by his side acting as interpreter.

Dr. Parkhomov delivered a Christmas gift to the world on December 25, 2014 when he published the video of his boiling-water demonstration of a Cold Fusion effect. Far too many words have been devoted on the Internet, such as on CMNS Google group chat site to the uncertain interpretation of the temperature measurements that he reported as being associated with this experiment. He reported, in fact, boiling water away to produce steam at a rate that maximized out at 2.74 to 1 over the amount of electrical energy that he was supplying to his unit. He did this with his ceramic stick version a ceramic “dog bone” reactor (using Rossi nomenclature) which glowed yellow hot at 1100° in his video (at 149:30 minutes into the first video). Notwithstanding the diversion on CMNS over his temperature measurements (the temperature profile that he reported over the time of his experiment), I’m still convinced that his 2+ to 1 measurement of energy as based on replacing boiling water, even if he did it with the kitchen measuring cup, is the most important event to have occurred in the past year.

Dr. Parkhomov was endeavoring to replicate the experiments done under the guidance of Andrea Rossi at Lugano, Switzerland in March, 2014, reported in October, 2014 by observers from Sweden. But Rossi never disclosed what his “magical ingredients” were. Dr. Parkhomov was quite open: powdered nickel and lithium aluminum hydride – LAlH4.

I largely accepted and believed the video that was posted on the Internet and the associated information provided by Dr. Parkhomov both at the time that it was released and subsequently. In contrast, others persisted in casting doubts on this entire demonstration because of the temperature data that had been provided. However, for me seeing this humble 70-year-old retired physicist from Lomonosov Moscow State University, Russia answering questions, answering the barrage of questions at ICCF-19 through the assistance of his very talented granddaughter validated in my mind that there was no fraud or mistake here. This was a genuine scientist who’d made a great step forward. For me this was the most important event that occurred at ICCF-19. I’m glad that Dr Parkhomov was honored by having, at his request, attendees assemble around his poster to pose questions to him.

Here’s my agenda: I think that the field needs to pursue new, focused and creative experiments that will lift the veil on this ColdFusion/LENR Mystery. Numerous experiments have been done in the past 26 years and there’s still no theory to explain the “magical” excess heat effect. Yes, there is a need for theoretical review, and the secret that everyone is seeking might be hidden in the 26 years of research reports that have issued. But, in my view, there needs to be a focus on new experiments that will lift the veil. The Martin Fleischmann Memorial Project is pursuing this objective.

Recently I tried to describe to a Cold Fusion enthusiast and friend how I would take the Parkhomov arrangement and introduce variants that would help elucidate what is going on. Here’s what I propose:

1) turn the apparatus so that it’s oriented vertically, particularly the pressure chamber containing the powdered nickel and the metal hydride
2) surround and contain the pressure vessel with a highly insulative environment. If necessary, employ a Dewar vacuum flask or other arrangement appropriately modified to tolerate containing an internal temperature of 1400°C.
3) Stack the materials in the pressure containment vessel so that they are vertically separated. For example, the powdered nickel could be on a higher platform and the lithium aluminum hydride could be on a lower platform.
4) This entire structure is going to be raised to a temperature of 1100° – 1300°C. This can be achieved, optionally as was done by Dr Parkhomov, by enclosing the pressure vessel in a ceramic cylinder and wrapping heater wire around the cylinder. Alternately, the heater wire could be wrapped on a cage of support material, e.g. glass rods, or even multiple narrow panels of Mica. Another heat loss control arrangement, along with a wide-mouthed Dewar flask, could include multiple sheet metal cylinders surrounding the red hot core. If the pressure vessel were in the form of a cylinder with a cylindrical pipe in the core, heat could be provided from this inner core. Howsoever done, external heating must be provided. But heat should be free to escape only at the top.
5) Measuring the heat emitted could be obtained by a variety of calorimetry methods, but I like the boiling water variant.
6) The 1st experiment would be to see whether separating the metal hydride from the nickel powder affects the excess heat that we expect to be generated.
7) As an alternative other solid-state sources of hydrogen could be placed on the lower shelf to serve as a source of hydrogen. If excess heat still arises we could conclude that lithium is not essential for this effect to occur. Other sources of hydrogen could include magnesium hydride – MgH2; calcium hydride – CaH2; sodium borohydride -NaBH4 as examples. This will establish whether the lithium or aluminum is an important part of the reaction.
8) Some of these metals, e.g. lithium may have a significant vapor pressure sufficient to expose lithium vapor to the powdered nickel. Placing a Palladium hydrogen filter disk between the higher and lower platforms would allow only hydrogen to access the nickel.
9) Once it’s established that an excess heat effect is occurring, many parameters could be varied to learn the response of the excess heat effect to:
a) the temperature of the pressure vessel, including the temperature of onset for the formation of excess heat and the effect of the rate of increase in temperature;
b) the amount/pressure of hydrogen gas in the pressure vessel, once released from the metal hydride;
c) the role, if any, of collateral metals , including not only metal components of the hydrogen emitting hydride, but also additional metals that can be mixed with the powdered nickel or be allowed to contact the nickel as a vapor;
d) the role, if any, of the use of an electrical heater that may emit magnetic fields and may be operated in either AC or DC mode; alternate heating, e.g. natural gas may be employed, fed through a central tube lined with a catalyst;
e) the substitution of other powdered or finely divided metals for the nickel powder (Palladium is an obvious 1st example, followed by titanium);
f) the substitution of deuterium gas for the initial hydrogen used to establish an excess heat effect; and
g) other variants as a fertile imagination may suggest.

Some people may be objecting: “Where’s the calorimetry?” Or more typically: “Where are the highly accurate measurements?” The point is that the boiling water method of heat measurement is totally satisfactory to validate whether an excess heat event is occurring. Once the coefficients of performance – COP – are well above 1:1 it is not necessarily to quibble about accuracy. Purists may wish to circulate water at a constant temperature in a chamber mounted above the heat source and weigh the amount of water associated with a stabilized temperature elevation. If the side walls and bottom of the reactor are extremely well insulated, this should provide the accuracy that so many insist must be achieved.

Some may say that the Parkhomov’s demonstration is just a reflection of the earlier work of Andrea Rossi. But that is not the best observation to make at this time. When such observations are made, even if true, they simply act as a diversion from discussing the key issue. The key issue is:

What experiments can be done that will lift the veil on the ColdFusion/LENR process?

Let’s stay focused on this central issue! Meanwhile ……

Dr Alexander G Parkhomov deserves credit for having openly and publicly shared his experiment and results with the World. Rossi, even if he may have been first to achieve similar effects, has always maintained a degree of secrecy around his process. If this results in Rossi getting a head start in the marketplace then his reward will be the profits that he will reap from that head start. Meanwhile, I give credit to a retired physics professor from Russia who showed both imagination and generosity in sharing a major advance in this field for the benefit of humanity.

David J French

David French is a retired patent attorney and the principal and CEO of Second Counsel Services. Second Counsel provides guidance for companies that wish to improve their management of Intellectual Property. For more information visit: www.SecondCounsel.com.

The Peak Oil Crisis: The Cold Fusion Conference

The original article The Peak Oil Crisis: The Cold Fusion Conference by Tom Whipple of Falls Church News-Press is posted here.

In mid-April the 19th International Conference on Cold Fusion (ICCF-19) took place in Padua, Italy and was attended by some 470 scientists, cold fusion bloggers, entrepreneurs, and the merely interested. The first of these conferences was held back in 1990 in the wake of the University of Utah announcement that two of its chemists had discovered a new way to release energy from the atom. The 1990 conference, however, was resoundingly ridiculed by the American Physical Association and was said to be nothing but a gathering for crackpots, pseudo-scientists, and fraudsters. However, over the decades, the conferees continued to gather in cities around the world, with some 100-300 usually in attendance. Many of those who came to the conferences were scientists who had been able to reproduce the “anomalous heat” that the University of Utah researchers had observed prior to their announcement in 1989. Most of the presentations were way down in the scientific weeds and were comprehensible only to those with considerable knowledge of particle physics, so the conferences drew little attention.

In the last couple of years, however, the tide has turned. Although Cold Fusion is still anathema to many in the U.S. and more importantly to the U.S. Department of Energy, scientists in several countries around the world are starting to see that the technology works, that it could be at least a partial solution to many of mankind’s problems, and are starting to talk about developments in the field to their local press. Most, however, continue to be unaware of recent progress in developing this new source of energy or are too wedded to their prejudices to even consider new evidence.

This year the most important development in cold fusion, unless overtaken by a competitive technology, is the acceptance test of the Rossi/Industrial heat, 1 megawatt, cold fusion reactor, which currently is underway at customer factory in the US. The engineer and entrepreneur, Andrea Rossi, who developed the first working commercial application of a cold fusion reactor, did not attend the ICCF-19 conference. However, his CEO Tom Darden of North Carolina based Cherokee Investment Partners and its subsidiary that is developing the cold fusion reactors, Industrial Heat, attended for the first time.

While many were hoping that Darden would give a progress report on Industrial Heat’s acceptance test of its first fusion reactor, they were disappointed. Darden talked only in generalities as to how he became involved with cold fusion, his dedication to the technology as a way of solving the carbon emissions problem, and his interest in financing similar projects. Two or three journalists who attended the conference however, reported being told by a “credible” source, possibly Darden, that the 400-day, 24/7, acceptance test of the one megawatt reactor is going well after several months. Rossi, who is spending full time monitoring the acceptance test, has been saying lately that the reactor has been running in the “self-sustained” mode a good piece of the time which means that it does not require any outside energy to stimulate the heat-producing reaction.

As has been the case for 25 years, mainstream media coverage of the conference was scarce to non-existent. In addition to his formal address to the conference, Darden who seems to be one of the more knowledgeable people around concerning what it going on in the field, gave a lengthy interview to a blogger. In the interview, Darden revealed that he was funding other cold fusion projects, but did not give any details.

During the interview Darden said primarily that he wants to use this technology to stop global warming and not just to make money from a new source of energy; that he invested millions of his own money in Rossi’s technology only after many tests and careful due diligence; and that he is convinced that Rossi’s or a similar technology will have major impact on the world. He notes that a cheap source of clean energy, which is exactly what cold fusion promises to be, is what mankind needs at this juncture.

Another star of the conference this year was the Russian physicist Parkhomov, who successfully reproduced Rossi’s cold fusion reaction earlier this year and has been sharing the details of his experiments with interested parties all over the world. This has made him a folk hero among those who are hard at work attempting to create still more replications of the reaction.

As could be expected many of the presentations were highly technical, and ranged from new ways of making the cold fusion reaction more reliable to aeronautical applications and even mutating radioactive waste into harmless substances. The Russians, with their ongoing Chernobyl problem, are particularly interest in this aspect of the science.

This conference was notable for it may be the last one to be ignored by the mainstream media. Should the Rossi/Industrial Heat year-long trial of a working commercial reactor be successfully completed by the time the next conference comes around, public and government perception of cold fusion could well have changed markedly. A working commercial scale reactor, which is open for public inspection, will be very difficult for skeptics to deny or ignore.

Next year’s conference will be held in Japan with a subsidiary conference in China. India was also a bidder for the honor. After 25 years, cold fusion looks like it is on a roll.

Read the original article The Peak Oil Crisis: The Cold Fusion Conference by Tom Whipple of Falls Church News-Press posted here.